

Audit of HTSS

AMIS Technologies Co., Ltd.

03 November 2022

Version: 1.2

Presented by:

Kudelski Security Research Team

Kudelski Security – Nagravision Sarl

Corporate Headquarters

Kudelski Security – Nagravision Sarl

Route de Genève, 22-24

1033 Cheseaux sur Lausanne

Switzerland

For public release

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 2 of 25

For public release

Copyright Notice

Kudelski Security, a business unit of Nagravision Sarl is a member of the Kudelski Group of Companies.

This document is the intellectual property of Kudelski Security and contains confidential and privileged

information. The reproduction, modification, or communication to third parties (or to other than the addressee)

of any part of this document is strictly prohibited without the prior written consent from Nagravision Sarl.

DOCUMENT PROPERTIES

Version: 1.2

File Name: Audit_HTSS

Publication Date: 03 November 2022

Confidentiality Level: Restricted

Document Owner: Tommaso Gagliardoni

Document Recipient: Anderson Lin

Document Status: Approved

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 3 of 25

For public release

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 5

1.1 Engagement Scope ... 5

1.2 Engagement Analysis .. 5

1.3 Observations ... 6

1.4 Issue Summary List ... 7

2. METHODOLOGY .. 8

2.1 Kickoff .. 8

2.2 Ramp-up .. 8

2.3 Review ... 8

2.4 Reporting ... 9

2.5 Verify ... 10

2.6 Additional Note .. 10

3. TECHNICAL DETAILS OF SECURITY FINDINGS (FOR FROST) 11

3.1 Party’s public keys only computed during signing .. 11

3.2 Issues in identity-commitment construction .. 12

3.3 Missing nonzero checks... 13

4. TECHNICAL DETAILS OF SECURITY FINDINGS (FOR CGGMP) 14

4.1 Key refreshing generates a set of shares of zero ... 14

4.2 Messages sent as P2P instead of broadcast ... 15

4.3 ZKP Proofs sent before collecting all responses .. 16

4.4 Wrong modulo reduction .. 18

5. OTHER OBSERVATIONS... 19

5.1 Protocol steps interleaved within different files ... 19

5.2 Use of notation from outdated versions of paper .. 20

5.3 Limited testing for key refresh .. 21

APPENDIX A: ABOUT KUDELSKI SECURITY ... 22

APPENDIX B: DOCUMENT HISTORY ... 23

APPENDIX C: SEVERITY RATING DEFINITIONS ... 24

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 4 of 25

For public release

TABLE OF FIGURES

Figure 1 Issue Severity Distribution ... 6

Figure 2 Methodology Flow ... 8

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 5 of 25

For public release

EXECUTIVE SUMMARY

Kudelski Security (“Kudelski”, “we”), the cybersecurity division of the Kudelski Group, was

engaged by AMIS Technologies Co., Ltd. (“the Client”) to conduct an external security

assessment in the form of a code audit of a major feature update of the hierarchical threshold

signature scheme (HTSS) library Alice (“the Product”) developed by the Client.

The assessment was conducted remotely by the Kudelski Cybersecurity Research Team. The

audit took place in August and September 2022, and focused on the following objectives:

• To provide a professional opinion on the maturity, adequacy, and efficiency of the

software solution in exam.

• To check compliance with existing standards.

• To identify potential security or interoperability issues and include improvement

recommendations based on the result of our analysis.

This report summarizes the analysis performed and findings. It also contains detailed

descriptions of the discovered vulnerabilities and recommendations for remediation.

1.1 Engagement Scope

The scope of the audit was a cryptographic review of the Client’s implementation in Golang of

two TSS schemes:

1) CGGMP for threshold ECDSA with support for hierarchical shares:

Paper: https://eprint.iacr.org/2021/060

Repository: https://github.com/getamis/alice/tree/master/crypto/tss/ecdsa/cggmp

2) FROST for threshold EdDSA with support for hierarchical shares:

Paper: https://eprint.iacr.org/2020/852

Repository: https://github.com/getamis/alice/tree/master/crypto/tss/eddsa/frost

The original commit number was f2af6dd139b4ab9b97b28356583854423ac4af73.

1.2 Engagement Analysis

The engagement consisted of a ramp-up phase where the necessary documentation about

the technological standards and design of the solution in exam was acquired, followed by a

manual inspection of the code provided by the Client and the drafting of this report.

As a result of our work, we identified 3 High, 2 Medium, 2 Low, and 3 Informational findings.

Most of these findings and observations are related to deviations from the original protocols.

We observe that the related academic papers are very recent and ripe with typos and

mistakes, so a certain difficulty in implementing them correctly has to be expected.

https://eprint.iacr.org/2021/060
https://github.com/getamis/alice/tree/master/crypto/tss/ecdsa/cggmp
https://eprint.iacr.org/2020/852
https://github.com/getamis/alice/tree/master/crypto/tss/eddsa/frost

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 6 of 25

For public release

Figure 1 Issue Severity Distribution

1.3 Observations

The Product provides an implementation of different TSS schemes, originally GG18 for

ECDSA, by adding support for hierarchical shares, thereby turning these schemes into HTSS.

The Product has been updated by adding support for two new schemes, CGGMP for ECDSA

and FROST for EdDSA. Regarding CGGMP, part of the code and of the low-level

functionalities related to hierarchical shares implementation are borrowed from the GG18

code, which was already audited in the past, so we did not reaudit that part. Regarding

FROST, its support is still experimental, and the distributed key generation algorithm (DKG)

is currently borrowed from the GG18 code. For both schemes, timing side-channel attacks

were considered not in scope.

In general, we found the implementation to be of high standard and we believe that all the

identified vulnerabilities can be easily addressed. Moreover, we did not find evidence of any

hidden backdoor or malicious intent in the code.

0

0.5

1

1.5

2

2.5

3

High Medium Low Informational

Issue Severity Distribution

High Medium Low Informational

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 7 of 25

For public release

1.4 Issue Summary List

The following security issues were found (for FROST):

ID SEVERITY FINDING STATUS

KS-AMC-F-01 High Party’s public keys only computed during

signing

Remediated

KS-AMC-F-02 Medium Issues in identity-commitment

construction

Remediated

KS-AMC-F-03 Low Missing nonzero checks Remediated

The following security issues were found (for CGGMP):

ID SEVERITY FINDING STATUS

KS-AMC-F-04 High Key refreshing generates a set of shares

of zero

Remediated

KS-AMC-F-05 High Messages sent as P2P instead of

broadcast

Remediated

KS-AMC-F-06 Medium ZKP Proofs sent before collecting all

responses

Remediated

KS-AMC-F-07 Low Wrong modulo reduction Remediated

The following are non-security observations related to general design and optimization:

ID SEVERITY FINDING STATUS

KS-AMC-O-01 Informational Protocol steps interleaved within

different files

Informational

KS- AMC-O-02 Informational Use of notation from outdated

versions of paper

Remediated

KS- AMC-O-03 Informational Limited testing for key refresh Remediated

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 8 of 25

For public release

2. METHODOLOGY

For this engagement, Kudelski used a methodology that is described at high-level in this

section. This is broken up into the following phases.

Figure 2 Methodology Flow

2.1 Kickoff

The project was kicked off when all the sales activities had been concluded. We set up a

kickoff meeting where project stakeholders were gathered to discuss the project as well as the

responsibilities of participants. During this meeting we verified the scope of the engagement

and discussed the project activities. It was an opportunity for both sides to ask questions and

get to know each other. By the end of the kickoff there was an understanding of the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

2.2 Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular project.

This included the steps needed for gaining familiarity with the codebase and technological

innovations utilized, such as:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for the languages used in the code

• Researching common flaws and recent technological advancements

2.3 Review

The review phase is where most of the work on the engagement was performed. In this phase

we analyzed the project for flaws and issues that could impact the security posture. This

included an analysis of the architecture, a review of the code, and a specification matching to

match the architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review of the original protocol

2. Review of the code written for the project

Kickoff Ramp-up Review Report Verify

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 9 of 25

For public release

3. Assessment of the cryptographic primitives used

4. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and utilizing the experience

of the reviewer. No dynamic testing was performed, only the use of custom-built scripts and

tools were used to assist the reviewer during the testing. We discuss our methodology in more

detail in the following subsections.

Code Safety

We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues

• Poor coding practices and unsafe behavior

• Leakage of secrets or other sensitive data through memory mismanagement

• Susceptibility to misuse and system errors

• Error management and logging

This is a general and not comprehensive list, meant only to give an understanding of the issues

we have been looking for.

Cryptography

We analyzed the cryptographic primitives and components as well as their implementation.

We checked in particular:

• Matching of the proper cryptographic primitives to the desired cryptographic

functionality needed

• Security level of cryptographic primitives and their respective parameters (key lengths,

etc.)

• Safety of the randomness generation in general as well as in the case of failure

• Safety of key management

• Assessment of proper security definitions and compliance to use cases

• Checking for known vulnerabilities in the primitives used

Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the

specification. We checked for things such as:

• Proper implementation of the documented protocol phases

• Proper error handling

• Adherence to the protocol logical description

2.4 Reporting

Kudelski delivered to the Client a preliminary report in PDF format that contained an executive

summary, technical details, and observations about the project, which is also the general

structure of the current final report.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 10 of 25

For public release

The executive summary contains an overview of the engagement, including the number of

findings as well as a statement about our general risk assessment of the project as a whole.

In the report we not only point out security issues identified but also informational findings for

improvement categorized into several buckets:

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity ranking

and recommendations for mitigation.

As we performed the audit, we also identified issues that are not security related, but are

general best practices and steps, that can be taken to lower the attack surface of the project.

As an optional step, we can agree on the creation of a public report that can be shared and

distributed with a larger audience.

2.5 Verify

After the preliminary findings have been delivered, we verified the fixes applied by the Client.

After these fixes were verified, we updated the status of the finding in the report.

The output of this phase was the current, final report with any mitigated findings noted.

2.6 Additional Note

It is important to notice that, although we did our best in our analysis, no code

audit assessment is per se guarantee of absence of vulnerabilities. Our effort was

constrained by resource and time limits, along with the scope of the agreement.

In assessing the severity of some of the findings we identified, we kept in mind both

the ease of exploitability and the potential damage caused by an exploit. Since this

is a library, we ranked some of these vulnerabilities potentially higher than usual, as

we expect the code to be reused across different applications with different input

sanitization and parameters.

Correct memory management is left to Go and was therefore not in scope. Zeroization of

secret values from memory is also not enforceable at a low level in a language such as Go.

While assessment the severity of the findings, we considered the impact, ease of exploitability,

and the probability of attack. This is a solid baseline for severity determination. Information

about the severity ratings can be found in Appendix C of this document.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 11 of 25

For public release

3. TECHNICAL DETAILS OF SECURITY FINDINGS (FOR FROST)

This section contains the technical details of our findings as well as recommendations for mitigation.

3.1 Party’s public keys only computed during signing

Finding ID: KS-AMC-F-01

Severity: High

Status: Remediated

Location: eddsa/frost/signer/round_1.go:123

Description and Impact Summary

In the code, each party’s own public key value Yi is computed during round 1 of signing, and transmitted

to each other party to be used in round 2.

 YPoint := ecpointgrouplaw.ScalarBaseMult(curve, share)
 msgY, err := YPoint.ToEcPointMessage()
 if err != nil {
 return nil, err
 }

However, this is a deviation from the FROST protocol. In the paper, every party is responsible for

reconstructing each other parties’ public key using information exchanged during the key generation

phase (Step 4 of Round 2 of Key Generation, Fig.1), and public keys of all participants are stored as an

indicator of that party’s identity.

If this public key is first computed by each party during signing, instead, this gives no security guarantee

because it implicitly assumes that every party behaves honestly at that step, by sending to everyone

else their correctly computed public key.

Recommendation

We recommend checking and storing these values during key generation.

Status Details

This was fixed in PR #191 according to our recommendations. Now each party’s Yi is stored in the

structure that defines the properties of the peer during key generation.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 12 of 25

For public release

3.2 Issues in identity-commitment construction

Finding ID: KS-AMC-F-02

Severity: Medium

Status: Remediated

Location: eddsa/frost/signer/round_1.go:329

Description and Impact Summary

The function computeB fetches a pre-stored tuple comprising of a party’s identity and stored

commitments to their precomputed nonces. The resulting string is supposed to be unique and can be

used through the signature generation. However, we found two problems.

The first one is that in one case, only the x coordinate of one point is used, while in the other case only

the y one is used:

// Get xi,Di,Ei,.......
func computeB(x []byte, D, E *ecpointgrouplaw.ECPoint) []byte {
 var result []byte
 separationSign := []byte(",")
 result = append(result, x...)
 result = append(result, separationSign...)
 result = append(result, D.GetX().Bytes()...)
 result = append(result, separationSign...)
 result = append(result, E.GetY().Bytes()...)
 result = append(result, separationSign...)
 return result
}

The second one is that the corresponding fields are not fixed size and are just divided by a comma

separator. When transforming this into a string, collisions can occur. For example, suppose that two

point coordinates are represented as two byte-vectors of length 32 as:

[0x00 A1 ... A31] [B1 ... B32]

where B1 is a byte representation of a comma. Now, suppose to have two other points:

[A1 ... A31 B1] [0x00 B2 ... B32]

After being processed by the function, in both cases we end up with the same bytestring:

[<x> A1 ... A31 B1 B2 ... B32]

therefore, subsequent collisions will occur.

Recommendation

We recommend performing a correct Edwards point representation using ecpointEncoding which

also constrains the size of the fields to a fixed size.

Status Details

This was fixed in PR #188 according to our recommendations.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 13 of 25

For public release

3.3 Missing nonzero checks

Finding ID: KS-AMC-F-03

Severity: Low

Status: Remediated

Location: eddsa/frost/signer/round_1.go:299,371

Description and Impact Summary

There are two modular reductions that are supposed to map to random elements of Z*, but since the

output is not checked to be nonzero, there is a slight possibility that the result will end up in Z instead

(zero element).

 h.Write(encodedPubKey[:])
 h.Write(message)
 digest := h.Sum(nil)
 result := new(big.Int).SetBytes(utils.ReverseByte(digest))
 return result.Mod(result, R.GetCurve().Params().N)

 temp, err = utils.HashProtosToInt(temp.Bytes(), &any.Any{
 Value: temp.Bytes(),
 }, &any.Any{
 Value: B,
 })
 tempMod = new(big.Int).Mod(temp, bit254)

At a very minimum, this formally breaks the correctness guarantees of the protocol.

Recommendation

Even if this only happens with negligible probability, due to the low-cost nature of the check we suggest

adding it as a defense-in-depth mechanism.

Status Details

This was fixed in PR #190 according to our recommendations.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 14 of 25

For public release

4. TECHNICAL DETAILS OF SECURITY FINDINGS (FOR CGGMP)

This section contains the technical details of our findings as well as recommendations for mitigation.

4.1 Key refreshing generates a set of shares of zero

Finding ID: KS-AMC-F-04

Severity: High

Status: Remediated

Location: ecdsa/cggmp/refresh/round_3.go:194

Description and Impact Summary

In the CGGMP paper, at the end of the protocols the peers finally compute their new share 𝑥𝑖
∗ and new

partial public key 𝑋𝑘
∗ with the following:

where 𝑥𝑖 and 𝑋𝑘 are the party’s old secret share and the other parties’ old partial public keys.

However, in the code implementation, the peers just set the new share to the sum of the decrypted

shares received from other parties and its own refresh share, basically ending up with a new set of

shares of 0. The same happens for the refresh of the partial public keys:

func (p *round3Handler) Finalize(logger log.Logger) (types.Handler, error) {
 curve := p.pubKey.GetCurve()
 refreshShare := new(big.Int).Set(p.refreshShare)
 sumpartialPubKey := pt.ScalarBaseMult(curve, p.refreshShare)
 partialPubKey := make(map[string]*pt.ECPoint)
 var err error
 for _, peer := range p.peers {
 plaintextShareBig := peer.round3.plaintextShareBig
 refreshShare = refreshShare.Add(refreshShare, plaintextShareBig)
 sumpartialPubKey, err = sumpartialPubKey.Add(pt.ScalarBaseMult(curve, plaintextShareBig))
 if err != nil {
 return nil, err
 }
 }

This means that after a refresh, or before any signature, the secret key is basically reset to a zero value.

Recommendation

We observe that the full CGGMP protocol is not used in the examples folder. The only test for the

refresh protocol (refresh_test.go) first runs the protocol, but then adds back the previous shares

from the DKG protocol in the test routine; it then proceeds to success verifying that the sum of all shares

is equal to the old secret (global private key). So, the test routine actually implements the full protocol

correctly, and this is probably why the issue has not been caught, but this is clearly not possible in the

final implementation, as it is up to each party to manage and manipulate their own share. We conclude

that the missing addition with the old share must be implemented in the Finalize routine.

Status Details

This was fixed in PR #203 according to our recommendations.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 15 of 25

For public release

4.2 Messages sent as P2P instead of broadcast

Finding ID: KS-AMC-F-05

Severity: High

Status: Remediated

Location: ecdsa/cggmp/sign/round_1.go:275

ecdsa/cggmp/signSix/round_1.go:311

Description and Impact Summary

At the end of the first round of the presign phase, both in the 3-round and the 6-rounds variants (Fig. 7

and 9 of the paper, respectively), there is certain data that must be sent (privately, e.g., on a secure

channel) to some other peers, and some data that must be reliably broadcast to all peers.

However, in the code (sendRound1Messages) there is no such distinction, and all these messages

are communicated peer-to-peer to every other party. This introduces potentially serious vulnerabilities,

as there is no way to make sure that a malicious party is not sending the same “public” values to

everyone else. In fact, a malicious party could “segment” the pool of other participants by sending a

certain value to some of them, and another value to all the others. This is similar to the “forget-and-

forgive” attack described for example in https://eprint.iacr.org/2020/1052.pdf (more information here).

Recommendation

We recommend clearly distinguishing messages that must be sent privately to other peers (through the

authenticated channel), and messages which must be broadcast publicly to all peers (and ensuring

robustness either through a trusted relay or through an echo mechanism).

Status Details

This has been addressed in PR #205 by introducing an extra echo round for messages that are meant

to be broadcast.

https://eprint.iacr.org/2020/1052.pdf
https://research.kudelskisecurity.com/2021/04/08/audit-of-ings-threshold-ecdsa-library-and-a-dangerous-vulnerability-in-existing-gennaro-goldfeder18-implementations/

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 16 of 25

For public release

4.3 ZKP Proofs sent before collecting all responses

Finding ID: KS-AMC-F-06

Severity: Medium

Status: Remediated

Location: ecdsa/cggmp/sign/round_1.go

ecdsa/cggmp/signSix/round_1.go

Description and Impact Summary

At the second step of round 2 of the presign phase, both in the 3-round and the 6-rounds variants (Fig.

7 and 9 of the paper, respectively), the two psi proofs should be computed and sent only when the

enc-elg proof has been verified for all parties.

In the implementation, they are instead sent after passing their sender’s verification only, without waiting

for all others. This is actually done in round_1.go rather than round_2.go.

 // verify Proof_enc
 err = round1.Psi.Verify(parameter, p.own.ssidWithBk, round1.KCiphertext, n, ownPed)
 if err != nil {
 return err
 }
 negBeta, countDelta, r, s, D, F, phiProof, err :=
cggmp.MtaWithProofAff_g(p.own.ssidWithBk, peer.para, p.paillierKey, round1.KCiphertext,
p.gamma, Gamma)
 if err != nil {
 return err
 }
 // psihat share proof: M(prove,Πaff-
g,(sid,i),(Iε,Jε,Dˆj,i,Kj,Fˆj,i,Xi);(xi,βˆi,j,sˆi,j,rˆi,j)).
 negBetahat, countSigma, rhat, shat, Dhat, Fhat, psihatProof, err :=
cggmp.MtaWithProofAff_g(p.own.ssidWithBk, peer.para, p.paillierKey, round1.KCiphertext,
p.bkMulShare, p.bkpartialPubKey)
 if err != nil {
 return err
 }

In addition to make the code difficult to parse, this might introduce the possibility of (ZKP counterpart

of) rogue key attacks, see for example here. The idea is that an adversary could delay their response

until they manage to see every other parties’ response, and craft ad-hoc proofs adaptively on those

responses to, e.g., pass a subsequent verification step without a proper witness. Even though we are

not able to provide a specific attack in this case, we consider this a serious deviation from the original

protocol, so the issue is marked as medium severity.

https://blog.sigmaprime.io/dkg-rogue-key.html

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 17 of 25

For public release

Recommendation

We recommend moving this part of the protocol into the appropriate round_2.go file, and waiting until

all the verification steps are passed before sending the ZKP response.

Status Details

This has been addressed in PR #207.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 18 of 25

For public release

4.4 Wrong modulo reduction

Finding ID: KS-AMC-F-07

Severity: Low

Status: Remediated

Location: ecdsa/cggmp/signSix/round_5.go:171

 Ecdsa/cggmp/signSix/round_6.go:168

Description and Impact Summary

In the red-alert #1 algorithm in the paper (Fig. 11), the μi,j values are computed modulo Ni while in the

implementation they are computed modulo nsquare.

 // build peersMsg
 peersMsg := make(map[string]*Err1PeerMsg, len(p.peers))
 for _, peer := range p.peers {
 muij := new(big.Int).Exp(nAddone, new(big.Int).Neg(peer.round2Data.alpha), nsquare)
 muij.Mul(muij, peer.round2Data.d)
 muNthPower := new(big.Int).Mod(muij, nsquare)
 mu := muij.Exp(muNthPower, nthRoot, nsquare)
 muNPower := muNthPower

The same happens for red-alert #2 algorithm (Fig. 12) in round_6.go.

Even if the proof psiMuProof later on is reduced modulo N correctly, having the mu proofs belonging

to a larger group might leak undesired information. At a very minimum invalidates the security proof of

the scheme.

Recommendation

We recommend performing the correct modulo reduction.

Status Details

This has been addressed in PR #204. However, we notice that the correct reduction modulo N is done

in two steps: first compute the mu proof modulo N2, and then subsequently reduce it further modulo N:

We think it would be better to compute mu as an exponential modulo N directly. However, the proposed

approach also works.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 19 of 25

For public release

5. OTHER OBSERVATIONS

This section contains additional observations that are not directly related to the security of the

code, and as such have no severity rating or remediation status summary. These observations

are either minor remarks regarding good practice or design choices or related to

implementation and performance. These items do not need to be remediated for what

concerns security, but where applicable we include recommendations.

5.1 Protocol steps interleaved within different files

Observation ID: KS-AMC-O-01

Location: various

Description and Impact Summary

We observe that in the CGGMP implementation, the various files round_X.go do not completely reflect

the corresponding steps as described in the paper. For example, round_4.go contains both proof

generation from the paper’s round 4 and verification of the same proofs which appear in the paper’s

round 5. This makes the flow of the program hard to parse to the paper.

Recommendation

We recommend using filenames that easily map to the paper’s described rounds, for ease of reading.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 20 of 25

For public release

5.2 Use of notation from outdated versions of paper

Observation ID: KS-AMC-O-02

Location: various

Description and Impact Summary

We notice that the code seems to refer to variables names using notation that does not match the most

recent versions of the FROST paper (example: Elli rather than rhoell and zi rather than si).

Recommendation

We recommend using variable names that closely reflect those used in the paper for ease of reading.

Notes

This has been addressed in PR #189.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 21 of 25

For public release

5.3 Limited testing for key refresh

Observation ID: KS-AMC-O-03

Location: various

Description and Impact Summary

We notice that the testing functions for the refresh protocol are very basic. For example, only one case

with all shares having the same hierarchical level (0) is tested, basically reducing Birckhoff interpolation

to Lagrange.

Recommendation

We recommend extending the test units to broader scenarios.

Notes

Additional tests have been introduced in PR #203.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 22 of 25

For public release

APPENDIX A: ABOUT KUDELSKI SECURITY

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and media

security solutions to enterprises and public sector institutions. Our team of security experts

delivers end-to-end consulting, technology, managed services, and threat intelligence to help

organizations build and run successful security programs. Our global reach and cyber

solutions focus is reinforced by key international partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit

https://www.kudelskisecurity.com.

Kudelski Security

Route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

Kudelski Security

5090 North 40th Street

Suite 450

Phoenix, Arizona 85018

This report and its content is copyright (c) Nagravision Sarl, all rights reserved.

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 23 of 25

For public release

APPENDIX B: DOCUMENT HISTORY

VERSION STATUS DATE AUTHOR COMMENTS

0.1 Draft 21 September
2022

Tommaso
Gagliardoni

First draft

0.2 Draft 22 September
2022

Tommaso
Gagliardoni

Corrected typos,
added code
snippet

1.0 Proposal 14 October 2022 Tommaso
Gagliardoni

Status updated
according to
patched code

1.1 Proposal 22 October 2022 Tommaso
Gagliardoni

Status updated
for KS-AMC-O-03

1.2 Final 3 November
2022

Tommaso
Gagliardoni

Clarified commit
number of
audited repo

REVIEWER POSITION DATE VERSION COMMENTS

Nathan Hamiel Head of Security
Research

21 September
2022

0.1

Nathan Hamiel Head of Security
Research

22 September
2022

0.2

Tommaso
Gagliardoni

Senior
Cryptography
Expert

14 October 2022 1.0

Tommaso
Gagliardoni

Senior
Cryptography
Expert

22 October 2022 1.1

Tommaso
Gagliardoni

Senior
Cryptography
Expert

3 November
2022

1.2

For public
release

APPROVER POSITION DATE VERSION COMMENTS

Nathan Hamiel Head of Security
Research

21 September
2022

0.1

Nathan Hamiel Head of Security
Research

22 September
2022

0.2

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 24 of 25

For public release

APPROVER POSITION DATE VERSION COMMENTS

Tommaso
Gagliardoni

Senior
Cryptography
Expert

14 October 2022 1.0

Tommaso
Gagliardoni

Senior
Cryptography
Expert

22 October 2022 1.1

Tommaso
Gagliardoni

Senior
Cryptography
Expert

3 November
2022

1.2

AMIS Technologies Co., Ltd. | Audit of HTSS

03 November 2022

© 2022 Nagravision Sarl / All Rights Reserved Page 25 of 25

For public release

APPENDIX C: SEVERITY RATING DEFINITIONS

Kudelski Security uses a custom approach when determining criticality of identified issues.

This is meant to be simple and fast, providing customers with a quick at a glance view of the

risk an issue poses to the system. As with anything risk related, these findings are situational.

We consider multiple factors when assigning a severity level to an identified vulnerability. A

few of these include:

• Impact of exploitation

• Ease of exploitation

• Likelihood of attack

• Exposure of attack surface

• Number of instances of identified vulnerability

• Availability of tools and exploits

SEVERITY DEFINITION

High The identified issue may be directly exploitable causing an immediate

negative impact on the users, data, and availability of the system for

multiple users.

Medium The identified issue is not directly exploitable but combined with other

vulnerabilities may allow for exploitation of the system or exploitation

may affect singular users. These findings may also increase in severity

in the future as techniques evolve.

Low The identified issue is not directly exploitable but raises the attack

surface of the system. This may be through leaking information that an

attacker can use to increase the accuracy of their attacks.

Informational Informational findings are best practice steps that can be used to harden

the application and improve processes.

