

Solend Crypto & Digital Asset
Assessment

Findings and Recommendations Report Presented to:

Solana Foundation

September 28, 2021
Version: 1.0

Presented by:

Kudelski Security, Inc.
5090 North 40th Street, Suite 450
Phoenix, Arizona 85018

FOR PUBLIC RELEASE

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 2 of 40

TABLE OF CONTENTS
TABLE OF CONTENTS .. 2
LIST OF FIGURES .. 3
LIST OF TABLES .. 3
EXECUTIVE SUMMARY ... 4

Overview .. 4
Key Findings ... 4
Scope and Rules Of Engagement .. 5

TECHNICAL ANALYSIS & FINDINGS .. 6
Findings .. 7
Technical analysis .. 8
Conclusion .. 16
Technical Findings ... 17
Missing check for reserve account owner opens for free FlashLoans ... 17
Loss of precision causing miscalculation of interest rate ... 21
Structs implementing bytemuck::Pod contains non-Pod fields .. 23
Pyth product parsing may cause index-out-of-bounds ... 26
Disabled lint checks may introduce bad code practices ... 29
Oracle (Pyth) program id stored in LendingMarket is not validated ... 30
SPL Token program id stored in LendingMarket is superfluous .. 32

METHODOLOGY .. 35
Kickoff ... 35
Ramp-up ... 35
Review .. 35
Code Safety .. 36
Cryptography .. 36
Technical Specification Matching ... 36
Reporting .. 37
Verify .. 37
Additional Note ... 37
The Classification of identified problems and vulnerabilities .. 38
Critical – vulnerability that will lead to loss of protected assets .. 38
High - A vulnerability that can lead to loss of protected assets .. 38
Medium - a vulnerability that hampers the uptime of the system or can lead to other problems 38
Low - Problems that have a security impact but does not directly impact the protected assets 38
Informational ... 38

Tools 39

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 3 of 40

RustSec.org .. 39
KUDELSKI SECURITY CONTACTS ... 40

LIST OF FIGURES
Figure 1: Findings by Severity .. 6
Figure 2: Account reference graph for BorrowObligationLiquidity .. 8
Figure 3: Account reference graph for DepositObligationCollateral ... 8
Figure 4: Account reference graph for DepositReserveLiquidity .. 9
Figure 5: Account reference graph for InitLendingMarket .. 9
Figure 6: Account reference graph for InitObligation .. 10
Figure 7: Account reference graph for InitReseve .. 10
Figure 8: Account reference graph for LiquidateObligation .. 11
Figure 9: Account reference graph for RedeemReserveCollateral .. 12
Figure 10: Account reference graph for RefreshObligation .. 13
Figure 11: Account reference graph for RefreshReserve ... 13
Figure 12: Account reference graph for RepayObligationLiquidity ... 14
Figure 13: Account reference graph for SetLendingMarketOwner ... 14
Figure 14: Account reference graph for WithdrawObligationCollateral .. 15
Figure 15: Account reference graph for FlashLoan .. 17
Figure 16: Methodology Flow ... 35

LIST OF TABLES
Table 1: Scope ... 5
Table 2: Findings Overview .. 7

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 4 of 40

EXECUTIVE SUMMARY

Overview
Solana Foundation engaged Kudelski Security to perform an Solend Crypto & Digital Asset Assessment.

The assessment was conducted remotely by the Kudelski Security Team. Testing took place on July 12-
August 3, 2021, and focused on the following objectives:

• Provide the customer with an assessment of their overall security posture and any risks that were
discovered within the environment during the engagement.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the security
measures that are in place.

• To identify potential issues and include improvement recommendations based on the result of our
tests.

On September 23, 2021 a rereview was done to verify that all findings had been mitigated.

This report summarizes the engagement, tests performed, and findings. It also contains detailed
descriptions of the discovered vulnerabilities, steps the Kudelski Security Teams took to identify and
validate each issue, as well as any applicable recommendations for remediation.

Key Findings
The following are the major themes and issues identified during the testing period. These, along with
other items, within the findings section, were prioritized and resolved prior to the issuance of this report.

• KS-SOLEND-F-00 – Missing check for reserve account owner opens for free FlashLoans
• KS-SOLEND-F-01 – Loss of precision causing miscalculation of interest rate
• KS-SOLEND-F-02 – Structs implementing bytemuck::Pod contains non-Pod fields
• KS-SOLEND-F-03 – Pyth product parsing may cause index-out-of-bounds

During the test, the following positive observations were noted regarding the scope of the engagement:

• The code was very well documented and had a really high production standard
• The development team was very good at explaining and engaging in discussions

Based on the call graphs and the formal verification we can conclude that the reviewed code implements
the documented functionality.

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 5 of 40

Scope and Rules Of Engagement
Kudelski performed an Solend Crypto & Digital Asset Assessment for Solana Foundation. The following
table documents the targets in scope for the engagement. No additional systems or resources were in
scope for this assessment.

The source code was supplied through public repository at https://github.com/solana-labs/solana-
program-library/tree/master/token-lending with the commit hash
ba0c0e007f99857894f238638b60cacb41281114.

Files included in the code review
program/src/processor.rs The main program file
program/src/entrypoint.rs Program entrypoint definitions
program/src/instruction.rs Instruction types
program/src/state/reserve.rs Lending market reserve
program/src/state/obligation.rs Obligations definition and utils
program/src/state/lending_market.rs The lending market
program/src/state/last-update.rs Utils for slots and updates
program/src/math/common.rs Common math utilities definitions
program/src/math/decimal.rs Decimal utilities and definitions
program/src/math/mod.rs Include file for math
program/src/math/rate.rs Utilities for ratios and percentages

Table 1: Scope

The source code used to verify if the findings were fixed was supplied through the public repository at
https://github.com/solendprotocol/solana-program-library/tree/master/token-lending with the commit hash
b6993d4b57dc91c2fd770e91cd91c01b008859ad.

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 6 of 40

TECHNICAL ANALYSIS & FINDINGS
During the Solend Crypto & Digital Asset Assessment, we discovered 2 findings that had a HIGH severity
rating, as well as 1 MEDIUM

The following chart displays the findings by severity.

Figure 1: Findings by Severity

0 1 2 3 4

Info

Low

Medium

High

Critical

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 7 of 40

Findings
The Findings section provides detailed information on each of the findings, including methods of
discovery, explanation of severity determination, recommendations, and applicable references.

The following table provides an overview of the findings.

Severity
STATUS

Description

KS-SOLEND-F-00 High RESOLVED Missing check for reserve account owner opens for free FlashLoans

KS-SOLEND-F-01 High RISK ACCEPTED Loss of precision causing miscalculation of interest rate

KS-SOLEND-F-02 Medium OPEN Structs implementing bytemuck::Pod contains non-Pod fields

KS-SOLEND-F-03 Low OPEN Pyth product parsing may cause index-out-of-bounds

KS-SOLEND-F-04 Informational ----------------- Low test coverage creates a risk for maintenance

KS-SOLEND-F-05 Informational ----------------- Disabled lint checks may introduce bad code practices

KS-SOLEND-F-06 Informational ----------------- Oracle (Pyth) program id stored in LendingMarket is not validated

KS-SOLEND-F-07 Informational ----------------- SPL Token program id stored in LendingMarket is superfluous

Table 2: Findings Overview

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 8 of 40

Technical analysis
Based on the source code the following call graphs was made to verify the validity of the code as well as
comfirmating that the intended functionality was implemented correctly and to the extent that the state of
the repository allowed.

Figure 2: Account reference graph for BorrowObligationLiquidity

Figure 3: Account reference graph for DepositObligationCollateral

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 9 of 40

Figure 4: Account reference graph for DepositReserveLiquidity

Figure 5: Account reference graph for InitLendingMarket

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 10 of 40

Figure 6: Account reference graph for InitObligation

Figure 7: Account reference graph for InitReseve

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 11 of 40

Figure 8: Account reference graph for LiquidateObligation

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 12 of 40

Figure 9: Account reference graph for RedeemReserveCollateral

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 13 of 40

Figure 10: Account reference graph for RefreshObligation

Figure 11: Account reference graph for RefreshReserve

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 14 of 40

Figure 12: Account reference graph for RepayObligationLiquidity

Figure 13: Account reference graph for SetLendingMarketOwner

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 15 of 40

Figure 14: Account reference graph for WithdrawObligationCollateral

A number of further investigations were made which conluded that they did not pose a risk to the
application. There were

• Authorization for LiquidateObligation is soundly validated

• Authorization for RepayObligationLiquidity is soundly validated

• Authorization for BorrowObligationLiquidity is soundly validated

• Authorization for WithdrawObligationCollateral is soundly validated

• Authorization for DepositObligationCollateral is soundly validated

• Authorization for InitObligation is soundly validated

• Authorization for RedeemReserveCollateral is soundly validated

• Authorization for DepositReserveLiquidity is soundly validated

• Authorization for RefreshReserve is soundly validated

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 16 of 40

• Authorization for InitReserve is soundly validated

• Authorization for SetLendingMarketOwner is soundly validated

• Dependency tokio 1.5.0 is vulnerable according to the RustSec Advisory Database

Conclusion
Based on the call graphs and the formal verification we can conclude that the code implements the
documented functionality to the extent of the code reviewed.

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 17 of 40

Technical Findings

Missing check for reserve account owner opens for free FlashLoans
Finding ID: KS-SOLEND-F-00

Severity: [High]

Status: [Remediated]

Description

As shown in Figure 15 below, the processing of the FlashLoan instruction does not verify ownership of
the reserve account.

Figure 15: Account reference graph for FlashLoan

As data is written to the reserve account, it seems that the implementation relies on an implicit ownership
verification done by the runtime policies. Unfortunately, the two writes done to the reserve account
"cancel out" each other resulting in the same state before and after the processing of the FlashLoan
instruction.

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 18 of 40

Proof of Issue

Reserve account data is modified by the following two calls. First, reserve.liquidity.borrow is called to
subtract the borrowed amount from the reserve's available amount.

File name: processor.rs

Line number: 1638

ReserveLiquidity::borrow is implemented as follows:

File name: reserve.rs

Line number: 414

In short, borrow updates reserve.liquidity as follows:

• reserve.liquidity.available_amount -= flash_loan_amount

• reserve.liquidity.borrowed_amount_wads += flash_loan_amount

Next, reserve.liquidity.repay is called to add the borrowed amount to the reserve's available amount again
after the repay.

File name: processor.rs

Line number: 1668

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 19 of 40

ReserveLiquidity::repay is implemented as follows:

File name: reserve.rs

Line number: 431

In short, repay updates reserve.liquidity as follows:

• reserve.liquidity.available_amount += flash_loan_amount

• reserve.liquidity.borrowed_amount_wads -= flash_loan_amount

Summing up reserve.liquidity.borrow and reserve.liquidity.repay we get:

• reserve.liquidity.available_amount -= flash_loan_amount

• reserve.liquidity.available_amount += flash_loan_amount

• reserve.liquidity.borrowed_amount_wads += flash_loan_amount

• reserve.liquidity.borrowed_amount_wads -= flash_loan_amount

Which leaves reserve.liquidity.available_amount and reserve.liquidity.borrowed_amount_wads at their
initial values.

Because, the reserve account is not passed as input to the cross program invocation on line 1658 the
runtime policies will not verify the reserve account until the spl-token-lending program has finished
processing the FlashLoan instruction. And because the data of the reserve account has not changed the
runtime policy will not require the spl-token-lending program to be owner of the reserve account.

Severity and Impact Summary

Because the ownership of the reserve account is not check it is possible to pass any account. This allows
an attacker to fabricate his own reserve account with other configurations than intended by the actual
lending market owner.

For example, an attack could clone the data of another reserve account and modify the fee. Doing this will
allow the attacker to take flash loans for free.

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 20 of 40

Recommendation

Implement an explicit check for ownership of the reserve account to ensure that the program ownership is
always verified.

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 21 of 40

Loss of precision causing miscalculation of interest rate
Finding ID: KS-SOLEND-F-01

Severity: [High]

Status: [RISK ACCEPTED]

Description

In calculations involving integer division unintended loss of precision may occur if the remainder is not
zero and further operations is performed afterwards.

This occurs in the calculation of the constant SLOTS_PER_YEAR

Proof of Issue

Filename: state/mod.rs

Beginning Line Number: 33

The constants used to calculate the value of SLOTS_PER_YEAR are defined in
solana_program::clock as follows

Thus the implementation evaluates SLOTS_PER_YEAR as follows

The loss of precision lies in the evaluation of 160 / 64 which will result in the integer value 2
and not the decimal number 2.5.

SLOTS_PER_YEAR is used as follow

The call from processor::process_instruction line 60 is in the match statement for
processing the RefreshReserve instruction which accrues the interest on a reserve.

With the current implementation the calculated interest will be 20% lower than expected.

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 22 of 40

Severity and Impact Summary

The SLOTS_PER_YEAR constant is used to calculate interest rates. As the constant is exposed to a
serious loss of precision all calculated interests will be off by 20%!

This is a programming error with immediate consequences to all interest calculations if put into
production.

Recommendation

Fix the calculation of the SLOTS_PER_YEAR constant to apply multiplication before division to
avoid loss of precision.

Furthermore, it is highly recommended to implement unit tests to validate the output of functions
with critical responsibilities such as the calculation of interests.

The desired implementation should be the following

which evaluates to

References

• N/A

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 23 of 40

Structs implementing bytemuck::Pod contains non-Pod fields
Finding ID: KS-SOLEND-F-02

Severity: [Medium]

Status: [Open]

Description

The trait bytemock::Pod is applied to the types Price and Product.

Proof of Issue

Filename: pyth.rs

Beginning Line Number: 103

Filename: pyth.rs

Beginning Line Number: 120

The documentation for bytemuck::Pod specifies 5 safety requirements:

• The type must be inhabited (eg: no Infallible).
• The type must allow any bit pattern (eg: no bool or char, which have illegal bit patterns).
• The type must not contain any padding bytes, either in the middle or on the end (eg: no

#[repr(C)] struct Foo(u8, u16), which has padding in the middle, and also no
#[repr(C)] struct Foo(u16, u8), which has padding on the end).

• The type needs to have all fields also be Pod.
• The type needs to be repr(C) or repr(transparent). In the case of repr(C), the packed

and align repr modifiers can be used as long as all other rules end up being followed.

Let's have a look at the implementation of the Price struct

Filename: pyth.rs

Beginning Line Number: 72

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 24 of 40

According to the documentation "the type needs to have all fields also be Pod."

The primitive integer types are supported out-of-the-box by the Pod trait. But the custom types
AccKey, PriceInfo, PriceType, and [PriceComp; 32] are not!

The same goes for the Product struct

Filename: pyth.rs

Beginning Line Number: 106

Here the AccKey type is not a Pod!

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 25 of 40

Severity and Impact Summary

Not following the safety requirements when using unsafe code may result in memory corruption and
unexpected behavior of the program.

Recommendation

• The types AccKey, PriceInfo, PriceType, and PriceComp needs to be Pods for Price
and Product to be implemented safely.

• The types PriceStatus and CorpAction needs to be Pods for PriceInfo, PriceComp
and Price to be implemented safely.

Furthermore, bytemock_derive should be used when implementing the Pod and Zeroable traits
as the derive macro checks the field types. This is highly recommended as the Pod and Zeroable
traits involve unsafe code!

Example:

References

• https://docs.rs/bytemuck/1.5.1/bytemuck/trait.Pod.html

• https://docs.rs/bytemuck_derive/1.0.1/bytemuck_derive/derive.Pod.html

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 26 of 40

Pyth product parsing may cause index-out-of-bounds
Finding ID: KS-SOLEND-F-03

Severity: [Low]

Status: [Open]

Description

The function for extracting the quote_currency entry of the key/value pairs in
pyth::Product::attr may cause index-out-of-bounds.

Proof of Issue

Filename: processor.rs

Beginning Line Number: 1734

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 27 of 40

The values from the pyth_product.attr array itself is used as indices to array without validating if it is
out of bounds. Unexpected data will cause index-out-of-bounce resulting in panic

Consider that the attr is an array containing only bytes of 230

A call to processor::get_pyth_product_quote_currency will then go like this

The first iteration of the while loop will go like this

Then the second iteration of the while loop will go like this

As pyth_product.attr has length 464 indexing into 683 will cause panic due to array-out-of-bounds.

Severity and Impact Summary

The values from the pyth_product.attr array itself is used as indices to array without validating if it is
out of bounds. Unexpected data will cause index-out-of-bounce resulting in panic

Recommendation

Check array indexes or use std::slice::get to avoid panic due to array-out-of-bounds.

References

• https://doc.rust-lang.org/std/primitive.slice.html#method.get

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 28 of 40

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 29 of 40

Disabled lint checks may introduce bad code practices
Finding ID: KS-SOLEND-F-04

Severity: [Informational]

Status: [Open]

Description

Lint checks were disabled in the code.

Proof of Issue

The following lint checks are disabled in the code:

• clippy::assign_op_pattern
• clippy::manual_range_contains
• clippy::ptr_offset_with_cast
• clippy::reversed_empty_ranges
• clippy::too_many_arguments
• clippy::wrong_self_convention

As clippy's lint checks warn about bad code practices, ignoring the warnings allows bad practices
in the code.

As an example the clippy::reversed_empty_ranges lint check verifies the following

Checks for range expressions x..y where both x and y are constant and x is greater or
equal to y.

Severity and Impact Summary

Disabling the clippy::reversed_empty_ranges lint check will allow such range expressions in the
code which will not warn on reversed range such as 3..0 which will cause panic at runtime!

Recommendation

Do not disable lint checks unless you have a really good reason and always document that reason in the
code where the check is disabled.

References

• Clippy Lints: reversed_empty_ranges

https://rust-lang.github.io/rust-clippy/master/index.html#reversed_empty_ranges

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 30 of 40

Oracle (Pyth) program id stored in LendingMarket is not validated
Finding ID: KS-SOLEND-F-05

Severity: [Informational]

Status: [Open]

Description

The LendingMarket struct contains ids for the Oracle (Pyth) program (oracle_program_id)

Proof of Issue

Filename: state/lending_market.rs

Beginning Line Number: 11

The oracle_program_id is written to the LendingMarket during processing of the
InitLendingMarket instruction. No instructions allows it to be changed after initialization.

The oracle_program_id is used to validate the price and product accounts in the InitReserve
instruction. The price account from is used again in the RefreshReserve instruction to update
the current market price which again is used in calculations for the RefreshObligation and the
BorrowObligationLiquidity instruction.

Severity and Impact Summary

As the oracle_program_id is not validated, it is possible to initialize a lending market with an
oracle_program_id referring to a program controlled by the someone else.

Off course, this would create a lending market which is untrustworthy. But how can the end-user
verify that?

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 31 of 40

Misbehaving lending markets may have no direct consequence for the spl-token-lending
program as this is a configuration issue and not an implementation issue. But the result may
backfire resulting in mistrust for the whole spl-token-lending and all of its lending markets.

Recommendation

If it is possible at all, the oracle_program_id should be validated against a whitelist of trusted Oracle
(Pyth) programs. If implemented it should be considered how to handle lending markets based on Oracle
programs that have been removed from the whitelist.

References

• N/A

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 32 of 40

SPL Token program id stored in LendingMarket is superfluous
Finding ID: KS-SOLEND-F-06

Severity: [Informational]

Status: [Open]

Description

The LendingMarket struct contains ids for the SPL Token program (token_program_id).

Proof of Issue

Filename: state/lending_market.rs

Beginning Line Number: 11

The token_program_id is written to the LendingMarket during processing of the
InitLendingMarket instruction. No instructions allows it to be changed after initialization.

The token_program_id is used to validate the SPL Token program account given as input to the
following instructions:

• InitReserve
• DepositReserveLiquidity
• RedeemReserveCollateral
• InitObligation
• DepositObligationCollateral
• WithdrawObligationCollateral
• BorrowObligationLiquidity
• RepayObligationLiquidity
• LiquidateObligation
• FlashLoan

In the processing of the InitReserve instruction the token_program_id account input is
validated against the SPL Token program id from the lending market

Filename: processor.rs

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 33 of 40

Beginning Line Number: 252

Furthermore, the owner of the reserve liquidity mint is also validated against the SPL Token program id
from the lending market

Filename: processor.rs

Beginning Line Number: 252

But then the function spl_token_init_account is called

Filename: processor.rs

Beginning Line Number: 348

The spl_token_init_account inline function creates an instruction by calling the constructor function
spl_token::instruction::initialize_account. Here, token_program_id account key is
passed as token_program argument to initialize_account

Filename: processor.rs

Beginning Line Number: 1828

The spl_token::instruction::initialize_account function (in the spl-token crate) calls the
spl_token::check_program_account function

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 34 of 40

Filename: token/program/src/instruction.rs

Beginning Line Number: 645

Finally, the spl_token::check_program_account function validated that the key of the
token_program_id account given as input to the InitReserve instruction is spl_token::id()

Filename: token/program/src/lib.rs

Beginning Line Number: 30

The validations done during the instruction processing are sane and must take place one way or
the other. But storing the SPL Token program id as part of the lending market account is
superfluous as the call from the processing of the InitReserve instruction to
spl_token::instruction::initialize_account requires the program id to be
spl_token::id().

So even though LendingMarket::token_program_id can be refer to another program than the
official SPL Token program, it will not be possible to initialize a reserve for such a lending
market...

Severity and Impact Summary

LendingMarket::token_program_id can be refer to another program than the official SPL
Token program, it will not be possible to initialize a reserve for such a lending market.

Recommendation

To simplify the code and the instruction arguments it is recommended to remove the
token_program_id from the LendingMarket struct and update all validations to check against the
spl_token::ID constant instead.

References

• N/A

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 35 of 40

METHODOLOGY
Kudelski Security uses the following high-level methodology when approaching engagements. They are
broken up into the following phases.

Figure 16: Methodology Flow

Kickoff
The project is kicked all of the sales process has concluded. We typically set up a kickoff meeting where
project stakeholders are gathered to discuss the project as well as the responsibilities of participants.
During this meeting we verify the scope of the engagement and discuss the project activities. It’s an
opportunity for both sides to ask questions and get to know each other. By the end of the kickoff there is
an understanding of the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

Ramp-up
Ramp-up consists of the activities necessary to gain proficiency on the particular project. This can include
the steps needed for familiarity with the codebase or technological innovation utilized. This may include,
but is not limited to:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for specific languages

• Researching common flaws and recent technological advancements

Review
The review phase is where a majority of the work on the engagement is completed. This is the phase
where we analyze the project for flaws and issues that impact the security posture. Depending on the
project this may include an analysis of the architecture, a review of the code, and a specification matching
to match the architecture to the implemented code.

In this code audit, we performed the following tasks:

Kickoff Ramp-up Review Report Verify

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 36 of 40

1. Security analysis and architecture review of the original protocol

2. Review of the code written for the project

3. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and utilizing the experience of the
reviewer. No dynamic testing was performed, only the use of custom built scripts and tools were used to
assist the reviewer during the testing. We discuss our methodology in more detail in the following
sections.

Code Safety
We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues

• Poor coding practices and unsafe behavior

• Leakage of secrets or other sensitive data through memory mismanagement

• Susceptibility to misuse and system errors

• Error management and logging

This list is general list and not comprehensive, meant only to give an understanding of the issues we are
looking for.

Cryptography
We analyzed the cryptographic primitives and components as well as their implementation. We checked
in particular:

• Matching of the proper cryptographic primitives to the desired cryptographic functionality needed

• Security level of cryptographic primitives and their respective parameters (key lengths, etc.)

• Safety of the randomness generation in general as well as in the case of failure

• Safety of key management

• Assessment of proper security definitions and compliance to use cases

• Checking for known vulnerabilities in the primitives used

Technical Specification Matching
We analyzed the provided documentation and checked that the code matches the specification. We
checked for things such as:

• Proper implementation of the documented protocol phases

• Proper error handling

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 37 of 40

• Adherence to the protocol logical description

Reporting
Kudelski Security delivers a preliminary report in PDF format that contains an executive summary,
technical details, and observations about the project.

The executive summary contains an overview of the engagement including the number of findings as well
as a statement about our general risk assessment of the project as a whole. We may conclude that the
overall risk is low, but depending on what was assessed we may conclude that more scrutiny of the
project is needed.

We not only report security issues identified but also informational findings for improvement categorized
into several buckets:

• Critical

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity ranking and
recommendations for mitigation.

As we perform the audit, we may identify issues that aren’t security related, but are general best practices
and steps, that can be taken to lower the attack surface of the project. We will call those out as we
encounter them and as time permits.

As an optional step, we can agree on the creation of a public report that can be shared and distributed
with a larger audience.

Verify
After the preliminary findings have been delivered, this could be in the form of the approved
communication channel or delivery of the draft report, we will verify any fixes withing a window of time
specified in the project. After the fixes have been verified, we will change the status of the finding in the
report from open to remediated.

The output of this phase will be a final report with any mitigated findings noted.

Additional Note
It is important to note that, although we did our best in our analysis, no code audit or assessment is a
guarantee of the absence of flaws. Our effort was constrained by resource and time limits along with the
scope of the agreement.

While assessment the severity of the findings, we considered the impact, ease of exploitability, and the
probability of attack. These is a solid baseline for severity determination.

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 38 of 40

The Classification of identified problems and vulnerabilities
There are four severity levels of an identified security vulnerability.

Critical – vulnerability that will lead to loss of protected assets
• This is a vulnerability that would lead to immediate loss of protected assets
• The complexity to exploit is low
• The probablillty of exploit is high

High - A vulnerability that can lead to loss of protected assets
• All discrepancies found where there is a security claim made in the documentation that can not

be found in the code
• All mismatches from the stated and actual functionality
• Unprotected key material
• Weak encryption of keys
• Badly generated key materials
• Tx signatures not verified
• Spending of funds through logic errors
• Calculation errors overflows and underflows

Medium - a vulnerability that hampers the uptime of the system or can
lead to other problems

• Insecure calls to third party libraries
• Use of untested or nonstandard or non-peer-revied crypto functions
• Program crashes leaves core dumps or write sensitive data to log files

Low - Problems that have a security impact but does not directly
impact the protected assets

• Overly complex functions
• Unchecked return values from 3rd party libraries that could alter the execution flow

Informational
• General recommendations

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 39 of 40

TOOLS
The following tools were used during this portion of the test. A link for more information about the tool is
provided as well.

Tools used during the code review and assessment

• Rust – cargo tools
• IDE modules for Rust and analysis of source code
• Cargo audit which uses https://rustsec.org/advisories/ to find vulnerabilities cargo.

RustSec.org
About RustSec
The RustSec Advisory Database is a repository of security advisories filed against Rust crates published
and maintained by the Rust Secure Code Working Group.

The RustSec Tool-set used in projects and CI/CD pipelines

‘cargo-audit’ - audit Cargo.lock files for crates with security vulnerabilities.
‘cargo-deny’ - audit `Cargo.lock` files for crates with security vulnerabilities, limit the usage of
particular dependencies, their licenses, sources to download from, detect multiple versions of
same packages in the dependency tree and more.

Solana Foundation
Solend Crypto & Digital Asset Assessment

© 2020 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0 | 9/28/2021

 Page 40 of 40

KUDELSKI SECURITY CONTACTS
NAME POSITION CONTACT INFORMATION

Scott
Carlson

Head of Blockchain
Center of Excellence Scottj.carlson@kudelskisecurity.com

