

FINAL – FOR PUBLIC RELEASE

Security Assessment for Swim Pool

Findings and Recommendations Report Presented to:

Terok Tech Limited

December 13, 2021

Version: 1.0.1- Final for Public Release

Presented by:

Kudelski Security, Inc.
5090 North 40th Street, Suite 450
Phoenix, Arizona 85018

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 2 of 24

TABLE OF CONTENTS
TABLE OF CONTENTS ... 2	
LIST OF FIGURES ... 3	
LIST OF TABLES ... 3	
EXECUTIVE SUMMARY .. 4	

Overview ... 4	
Key Findings ... 4	
Scope and Rules of Engagement ... 5	

TECHNICAL ANALYSIS & FINDINGS ... 6	
Findings .. 7	
Technical analysis .. 7	
Technical Findings .. 8	

General Observations ... 8	
Decimal, Panics and Unwraps .. 9	
Order of operations lose precision .. 11	
Mint authority of token mint accounts is not checked .. 13	
Initial depth of unknown balance inconsistent with documentation ... 14	
Documentation shows depth estimation diverging for relative error used ... 16	
Undocumented branches in `calculate_unknown_balance` .. 17	
Undocumented fee calculation .. 18	

METHODOLOGY ... 19	
Kickoff ... 19	
Ramp-up ... 19	
Review .. 20	
Code Safety .. 20	
Technical Specification Matching ... 20	
Reporting .. 20	
Verify ... 21	
Additional Note ... 21	
The Classification of identified problems and vulnerabilities .. 21	

Critical – a vulnerability that will lead to loss of protected assets .. 22	
High - A vulnerability that can lead to loss of protected assets ... 22	
Medium - a vulnerability that hampers the uptime of the system or can lead to other problems 22	
Low - Problems that have a security impact but does not directly impact the protected assets 22	
Informational ... 22	

Tools ... 23	

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 3 of 24

RustSec.org .. 23	
KUDELSKI SECURITY CONTACTS .. 24	

LIST OF FIGURES
Figure 1: Findings by Severity .. 6	
Figure 2: Methodology Flow ... 19	

LIST OF TABLES
Table 1: Scope ... 5	
Table 2: Findings Overview .. 7	

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 4 of 24

EXECUTIVE SUMMARY

Overview
Terok Tech Limited engaged Kudelski Security to perform a Security Assessment for Swim Pool.

The assessment was conducted remotely by the Kudelski Security Team. Testing took place on
November 01 - November 12, 2021, and focused on the following objectives:

• Provide the customer with an assessment of their overall security posture and any risks
discovered within the environment during the engagement.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the security
measures.

• To identify potential issues and include improvement recommendations based on the result of our
tests.

This report summarises the engagement, tests performed, and findings. It also contains detailed
descriptions of the discovered vulnerabilities, steps the Kudelski Security Teams took to identify and
validate each issue, as well as any applicable recommendations for remediation.

Key Findings
The following are the major themes and issues identified during the testing period. Within the findings
section, these, along with other items, should be prioritised for remediation to reduce the risk they pose.

• KS-SWIMPOOL-01 – Decimal, Panics and Unwraps

• KS-SWIMPOOL-02 – Order of operations lose precision

• KS-SWIMPOOL-03 – Mint authority of token mint accounts is not checked

• KS-SWIMPOOL-04 – Initial depth of unknown balance inconsistent with documentation

• KS-SWIMPOOL-05 – Documentation shows depth estimation diverging for relative error used

• KS-SWIMPOOL-06 – Undocumented branches in `calculate_unknown_balance`

• KS-SWIMPOOL-07 – Undocumented fee calculation

During the test, the following positive observations were noted regarding the scope of the engagement:

• The team was supportive and open to discussing the design choices made

Based on the source code, the validity of the code was verified and confirmed that the intended
functionality was implemented correctly and to the extent that the state of the repository allowed. As of
the issuance of this report, all findings are resolved to our expectations.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 5 of 24

Scope and Rules of Engagement
Kudelski performed a Security Assessment for Swim Pool. The following table documents the targets in
scope for the engagement. No other systems or resources were in scope for this assessment.

The source code was supplied through a private repository at https://gitlab.com/btblock-
cybersec/swim/pool with the commit hash 6e73232b0a7e6934103c50cb6ef830fb2f91de9b. The code was
then reaudited at commit hash 7e5a214efc630e7f158fc9ca711a4dd6666a92a2.

Files included in the code review

src
├── amp_factor.rs*
├── common.rs*
├── decimal.rs*
├── entrypoint.rs*
├── error.rs*
├── instruction.rs*
├── invariant.rs*
├── lib.rs*
├── pool_fee.rs*
├── processor.rs*
└── state.rs*

Table 1: Scope

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 6 of 24

TECHNICAL ANALYSIS & FINDINGS
During the Security Assessment for Swim Pool, we discovered:

• 7 findings with an INFORMATIONAL severity rating.

The following chart displays the findings by severity.

Figure 1: Findings by Severity

0 1 2 3 4 5 6 7 8

Info

Low

Medium

High

Critical

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 7 of 24

Findings
The Findings section provides detailed information on each finding, including discovery methods,
explanation of severity determination, recommendations, and applicable references.

The following table provides an overview of the findings.

Severity Description

KS-SWIMPOOL-01 Informational Decimal, Panics and Unwraps

KS-SWIMPOOL-02 Informational Order of operations lose precision

KS-SWIMPOOL-03 Informational Mint authority of token mint accounts is not checked

KS-SWIMPOOL-04 Informational Initial depth of unknown balance inconsistent with
documentation

KS-SWIMPOOL-05 Informational Documentation shows depth estimation diverging for
relative error used

KS-SWIMPOOL-06 Informational Undocumented branches in `calculate_unknown_balance`

KS-SWIMPOOL-07 Informational Undocumented fee calculation

Table 2: Findings Overview

Technical analysis
Based on the source code, the validity of the code was verified and confirmed that the intended
functionality was implemented correctly and to the extent that the state of the repository allowed. Many
further investigations were made, which concluded that they did not pose a risk to the application. They
were:

• No potential authorisation issues were observed

• No internal unintentional unsafe references

• No large memory allocations

• No unjustified drop implementations

Based on formal verification, we conclude that the code implements the documented functionality to the
extent of the code reviewed.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 8 of 24

Technical Findings

General Observations
Swim's pool program is an Automated Market Maker aiming to enable the exchange of a fixed number of
stable coins in the form of tokens in the Solana blockchain. The program manipulates accounts, each
holding amounts of a distinct token, in addition to a liquidity pool token. The latter is associated with the
pool's depth, fees and rewards, and can be exchanged for other tokens of the pool as well. Token prices
are calculated and set dynamically according to StableSwap.

Code Quality
All necessary precautions are taken to ensure the accounts' integrity and correct authorisation regarding
security. The pool's state account data are correctly checked and de-serialised. Instructions are
separated between initialisation, governance and finance, with each section being coherent and easy to
follow.

The implementation of price calculations takes place in a separate file. Although the separation is
beneficial, the invariant code lacks documentation and clarity, making it harder to read and navigate. The
invariant's functions were checked against the documentation provided, with some inconsistencies listed
as found below.

It should also be noted that commented and //TODO code was also included in the version of the code
reviewed.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 9 of 24

Decimal, Panics and Unwraps
Finding ID: KS-SWIMPOOL-01
Severity: Informational
Status: Rejected

Description

The project chose to provide its implementation of decimal representation. Arithmetic functions (either
derived or explicit) involve custom types and their uses, resulting in many warnings while linting. Although
arithmetic functions are intended and designed to keep numbers within bounds, unchecked arithmetic
should be avoided. We understand that DecimalU64 is used for saving space as opposed to Rust's
Decimal. However, testing seems short. In addition, the code includes unchecked unwraps and explicit
panics.

Proof of issue
$ cargo clippy -- -A clippy::all -W clippy::integer_arithmetic -W
clippy::integer_division
...
warning: 404 warnings emitted

File name: src/invariant.rs Line number: 35

fn fast_round(decimal: Decimal) -> AmountT {
 //TODO no rounding to preserve compute budget for now

 // const ONE_HALF: Decimal = Decimal::from_parts(5, 0, 0, false, 1);
 // AmountT::from((decimal + ONE_HALF).trunc().to_u128().unwrap())

 //due to rounding errors we can get negative values here, hence the
unwrap_or
 //decimal.to_u128().unwrap_or(0).into()
 decimal.to_u128().unwrap().into()
}

File name: src/decimal.rs

// Line 506
 fn add(self, other: Self) -> Self::Output {
 self.checked_add(other)
 .unwrap_or_else(|| panic!("Overflow while adding {:?}
{:?}", self, other))
 }
// Line 561
 fn sub(self, other: Self) -> Self::Output {
 self.checked_sub(other)
 .unwrap_or_else(|| panic!("Underflow while subtracting
{:?} {:?}", self, other))
 }
// Line 606
 fn mul(self, other: Self) -> Self::Output {
 self.checked_mul(other)

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 10 of 24

 .unwrap_or_else(|| panic!("Overflow while multiplying
{:?} {:?}", self, other))
 }
// Line 659
 fn div(self, other: Self) -> Self::Output {
 self.checked_div(other)
 .unwrap_or_else(|| panic!("Division by zero while
dividing {:?} {:?}", self, other))
 }

Severity and Impact summary

Commented code removes from the code's otherwise good clarity. Unchecked unwraps and panics
interrupt the normal and expected execution of transactions. Finally, relying on external crates (such as
uint for U128) adds to uncertainty, complexity, instability, and size of the binary.

Recommendation

Since invariant functions mostly use Rust's native Decimal type, it is recommended to use native types
throughout. To save space, the structures could be kept without the additional functionality. decimal.rs
also includes types that are not used in the project, like DecimalU128, whose removal, macros could be
avoided, simplifying the code. In general, unused code should be avoided, reducing the final binary's size.

Panics should be avoided using checks, Option and/or Result.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 11 of 24

Order of operations lose precision
Finding ID: KS-SWIMPOOL-02
Severity: Informational
Status: Open

Description

When multiple decimal arithmetic functions are combined in the current implementation, precedence is
sometimes given to the division using parentheses. This loses precision that can be preserved by
changing the operations' order.

A quick example to demonstrate this is that:

Decimal::TEN * (Decimal(1,28)) / Decimal::TEN) == Decimal::ZERO &&
(Decimal::TEN * Decimal(1,28)) / Decimal::TEN) == Decimal:: Decimal(1,28)

Proof of issue:
File name: src/invariant.rs

// Line 369
 Decimal::from(initial_depth.to_u128().unwrap())
 * (Decimal::from(sum_updated_balances.as_u128()) /
Decimal::from(sum_pool_balances.as_u128())),
// Line 375
 Decimal::from(balance.as_u128())
 * (Decimal::from(sum_updated_balances.as_u128())
 /
Decimal::from(sum_pool_balances.as_u128())),
// Line 426
 let lp_amount =
fast_round(Decimal::from(lp_total_supply.as_u128()) * (user_depth /
initial_depth));
 let governance_depth = total_fee_depth * (governance_fee /
total_fee);
// Line 438
 dec_sub_given_order(is_add, updated_depth, initial_depth) /
initial_depth
 * Decimal::from(lp_total_supply.as_u128()),
// Line 458
 let updated_depth = initial_depth
 * (Decimal::from((lp_total_supply - burn_amount).as_u128()) /
Decimal::from(lp_total_supply.as_u128()));
// Line 477
 let governance_depth = total_fee_depth * (governance_fee /
total_fee);
 let governance_mint_amount = fast_round(
 governance_depth
 * (Decimal::from((lp_total_supply -
burn_amount).as_u128()) / (updated_depth - governance_depth)),
);
// Line 510

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 12 of 24

 let reciprocal_decay = pool_balances_times_n
 .iter()
 .fold(Decimal::one(), |acc, &pool_balance_times_n| {
 acc * (depth / pool_balance_times_n)
 });
// Line 537
 let reciprocal_decay = known_balances.iter().fold(Decimal::one(),
|acc, &known_balance| {
 acc * (depth / Decimal::from((known_balance * n).as_u128()))
 });

File name: src/amp_factor.rs Line number: 72

 let delta = value_diff * (time_since_initial /
total_adjustment_time);

Severity and Impact summary

Operation order can reduce precision.

Recommendation

Values should be inflated first before being divided to maximise precision.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 13 of 24

Mint authority of token mint accounts is not checked
Finding ID: KS-SWIMPOOL-03
Severity: Informational
Status: Remediated

Description

The liquidity pool's mint account is checked during initialisation for the correct mint_authority and an
empty freeze_authority. These are not checked for the token mint accounts.

Proof of issue
File name: src/processor.rs Line number: 138

 let token_decimals: [_; TOKEN_COUNT] = create_result_array(|i| ->
Result<_, ProgramError> {
 let mint_decimals =
Self::check_program_owner_and_unpack::<MintState>(token_mint_accounts[i])?.de
cimals;
 // ... no check is performed in the following code

Severity and Impact summary

Minters of token accounts could affect the total supply of tokens by minting or burning without updating
the pool.

Recommendation

Unless the token accounts are somehow trusted, check for the existence of a freeze_authority in
token_mint_accounts. Another check could be for the uniqueness of mint_authority of
token_mint_accounts to avoid the same mint for two accounts.

Remediation

In practice, the pools will correspond to trusted stable coin token accounts.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 14 of 24

Initial depth of unknown balance inconsistent with documentation
Finding ID: KS-SWIMPOOL-04
Severity: Informational
Status: Remediated

Description

According to the documentation provided:

Even though 𝐷𝑛 seems like the canonical choice for the initial guess of 𝑥𝑗, we have to use 𝐷. To see why
to look at 𝐺(𝑥𝑗) and consider a pool that's arbitrarily far from equilibrium (i.e. ∀𝑖≠𝑗:𝑥𝑖<𝜖). The numerator of
𝐺(𝑥𝑗) would grow arbitrarily large, while the denominator would tend towards 𝑥𝑗+𝐷/𝐴−𝐷 and would hence
be 0 or even harmful if 𝑥𝑗≤𝐷−𝐷/𝐴. Since 𝐴 is an arbitrary parameter, 𝐷/𝐴 can be arbitrarily small.
Therefore we have to choose 𝑥𝑗=𝐷 to ensure a practical value at all times.

This is not consistent with the actual implementation.

Proof of issue
Filename: src/invariant.rs

// Line 303
 let unknown_balance = Self::calculate_unknown_balance(
 &known_balances,
 initial_depth,
 amp_factor,
 if is_exact_input {
 pool_balances[index]
 } else {
 AmountT::zero()
 },
)?;
// Line 462
 let unknown_balance =
 Self::calculate_unknown_balance(&known_balances, updated_depth,
amp_factor, pool_balances[output_index])?;

Severity and Impact summary

The inconsistent initial value during unknown value calculation could result in calculations other than
expected.

Recommendation

Use the pool's depth as an initial value for unknown value estimation, or update the documentation
accordingly.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 15 of 24

Remediation

Updates to the initial values provided were made, and clarification was provided for the differences
between documentation, in which calculations are agnostic to a pool's state and in practice scenarios
where the pool's previous depth can be used as initial depth.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 16 of 24

Documentation shows depth estimation diverging for relative error used
Finding ID: KS-SWIMPOOL-05
Severity: Informational
Status: Open

Description

For a relative error of 0.5, used currently, depth estimation seems to diverge for small values of x.

Proof of issue
File name: src/invariant.rs Line number: 507

 while abs_difference(depth, previous_depth) > Decimal::new(5, 1) {

Severity and Impact summary

If similar to the documentation, depth estimation diverges from the expected value.

Recommendation

Use a smaller value for the relative error at the cost of a few more iterations.

Note

This issue was initially listed as Medium but moved to Informational after the development team pointed
out that depth is calculated to the pool's closest token subdivision in practice.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 17 of 24

Undocumented branches in `calculate_unknown_balance`
Finding ID: KS-SWIMPOOL-06
Severity: Informational
Status: Remediated

Description

A few lines of code seem to branch out into some calculations whose clarity is lacking:

Proof of issue
Filename: src/invariant.rs Line number: 545

 let numerator_fixed = if reciprocal_decay < Decimal::from(u32::MAX) {
 (U192::from(
 (reciprocal_decay * (depth / Decimal::from(TOKEN_COUNT)))
 .to_u128()
 .unwrap(),
) * U192::from((depth / amp_factor *
Decimal::from(u32::MAX)).to_u128().unwrap()))
 / U192::from(u32::MAX)
 } else {
 (((U192::from(reciprocal_decay.to_u128().unwrap())
 * U192::from((depth /
Decimal::from(TOKEN_COUNT)).to_u128().unwrap()))
 * U192::from(depth.to_u128().unwrap()))
 / U192::from((amp_factor *
Decimal::from(u32::MAX)).to_u128().unwrap()))
 / U192::from(u32::MAX)
 };

Testing the code separately, it seems the two branches yield different outputs depending on the condition
of if reciprocal_decay < Decimal::from(u32::MAX). The connection between u32::MAX and
the pool's operations is not clear.

Severity and Impact summary

Lacking clarity in calculate_unknown_balance.

Recommendation

Please document why branching and re-scaling take place.

Remediation

The code was commented on in a later version of the code. Both branches multiply reciprocal_decay *
depth / token_count. The former branch represents the case where multiplication can be safely
performed, while the latter inflates the numerator to preserve precision.

Further isolated testing of this code is recommended.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 18 of 24

Undocumented fee calculation
Finding ID: KS-SWIMPOOL-07
Severity: Informational
Status: Open

Description

With some documentation, it would be nice to accompany the fee calculations, which seem to be the
most complicated part of the invariant calculations.

Severity and Impact summary

Fee calculations affect the invariant in non-trivial ways.

Recommendation

Extend Jupyter notebook to include how the fees are expected to be deducted.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 19 of 24

METHODOLOGY
Kudelski Security uses the following high-level methodology when approaching engagements. They are
broken up into the following phases.

Figure 2: Methodology Flow

Kickoff
The project is kicked all of the sales processes has concluded. We typically set up a kickoff meeting
where project stakeholders are gathered to discuss the project and the responsibilities of participants.
During this meeting, we verified the scope of the engagement and discussed the project activities. It's an
opportunity for both sides to ask questions and get to know each other. By the end of the kickoff, there is
an understanding of the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artefacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

Ramp-up
Ramp-up consists of the activities necessary to gain proficiency on a particular project. This can include
the steps needed for familiarity with the codebase or technological innovation utilised. This may include,
but is not limited to:

• Reviewing previous work in the area, including academic papers

• Reviewing programming language constructs for specific languages

• Researching common flaws and recent technological advancements

Kickoff Ramp-up Review Report Verify

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 20 of 24

Review
The review phase is where most of the work on the engagement is completed. This is the phase where
we analyse the project for flaws and issues that impact the security posture. Depending on the project,
this may include an architecture analysis, a code review, and a specification matching to match the
architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review of the original protocol

2. Review of the code written for the project

3. Compliance with the code with the provided technical documentation

The review for this project was performed using manual methods and utilising the reviewer's experience.
No dynamic testing was performed. Only custom-built scripts and tools were used to assist the reviewer
during the testing. We discuss our methodology in more detail in the following sections.

Code Safety
We analysed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues

• Poor coding practices and unsafe behaviour

• Leakage of secrets or other sensitive data through memory mismanagement

• Susceptibility to misuse and system errors

• Error management and logging

This list is general and not comprehensive, meant only to understand the issues we are looking for.

Technical Specification Matching
We analysed the provided documentation and checked that the code matches the specification. We
checked for things such as:

• Proper implementation of the documented protocol phases

• Proper error handling

• Adherence to the protocol logical description

Reporting
Kudelski Security delivers a PDF draft report containing an executive summary, technical details, and
observations about the project.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 21 of 24

The executive summary contains an overview of the engagement, including the number of findings and a
statement about our general risk assessment of the project as a whole. We may conclude that the overall
risk is low, but depending on what was assessed, we may conclude that more scrutiny of the project is
needed.

We not only report security issues identified but also informational findings for improvement categorised
into several buckets:

• Critical

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity ranking and
recommendations for mitigation.

As we perform the audit, we may identify issues that aren't security related but are general best practices
and steps that can be taken to lower the attack surface of the project. We will call those out as we
encounter them and as time permits.

As an optional step, we can create a public report that can be shared and distributed to a larger audience.

Verify
After the preliminary findings have been delivered, this could be in the form of the approved
communication channel or the delivery of the draft report. We will verify any fixes within a window of time
specified in the project. After the fixes have been verified, we will change the finding status in the report
from open to remediate.

The output of this phase will be a final report with any mitigated findings noted.

Additional Note
It is important to note that, although we did our best in our analysis, no code audit or assessment is a
guarantee of the absence of flaws. Our effort was constrained by resource and time limits and the
agreement's scope.

While assessing the severity of the findings, we considered the impact, ease of exploitability, and the
probability of attack. This is a solid baseline for severity determination.

The Classification of identified problems and vulnerabilities
There are four severity levels of an identified security vulnerability.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 22 of 24

Critical – a vulnerability that will lead to loss of protected assets
• This is a vulnerability that would lead to immediate loss of protected assets
• The complexity to exploit is low
• The probability of exploit is high

High - A vulnerability that can lead to loss of protected assets
• All discrepancies found where there is a security claim made in the documentation that can not

be found in the code
• All mismatches from the stated and actual functionality
• Unprotected key material
• Weak encryption of keys
• Badly generated key materials
• Tx signatures not verified
• Spending of funds through logic errors
• Calculation errors overflows and underflows

Medium - a vulnerability that hampers the uptime of the system or can lead to
other problems

• Insecure calls to third party libraries
• Use of untested or nonstandard, or non-peer-revied crypto functions
• Program crashes leaves core dumps or writes sensitive data to log files

Low - Problems that have a security impact but does not directly impact the
protected assets

• Overly complex functions
• Unchecked return values from 3rd party libraries that could alter the execution flow

Informational
• General recommendations

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 23 of 24

Tools
The following tools were used during this portion of the test. A link for more information about the tool is
provided as well.

Tools used during the code review and assessment

• Rust – cargo tools
• IDE modules for Rust and analysis of source code
• Cargo audit, which uses https://rustsec.org/advisories/ to find vulnerabilities cargo.

RustSec.org

About RustSec

The RustSec Advisory Database is a repository of security advisories filed against Rust crates published
and maintained by the Rust Secure Code Working Group.

The RustSec Tool-set used in projects and CI/CD pipelines

'cargo-audit' - audit Cargo.lock files for crates with security vulnerabilities.

'cargo-deny' - audit `Cargo.lock` files for crates with security vulnerabilities, limit the usage of
particular dependencies, their licenses, sources to download from, detect multiple versions of
same packages in the dependency tree and more.

Terok Tech Limited
Security Assessment for Swim Pool

© 2021 Kudelski Security, Inc. Confidential and Proprietary. All Rights Reserved. Version 1.0.1 | 11/16/21

 Page 24 of 24

KUDELSKI SECURITY CONTACTS
NAME POSITION CONTACT INFORMATION

