

Smart Contract Secure Code Review

Findings and Recommendations Report Presented to:

Beluga

September 07, 2022
Version: 1.1

Presented by:

Kudelski Security, Inc.
5090 North 40th Street, Suite 450
Phoenix, Arizona 85018

PUBLIC RELEASE

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 2 of 14

TABLE OF CONTENTS

TABLE OF CONTENTS2

LIST OF FIGURES3

LIST OF TABLES3

EXECUTIVE SUMMARY4

Overview4

Key Findings4

Scope and Rules of Engagement5

TECHNICAL ANALYSIS & FINDINGS6

Threat Analysis7

Findings8
1 – Bump Seed Canonicalization9
2 – Missing Empty String Check9
3 – Missing Tests9
4 – Using Components with Known Vulnerabilities9
5 – Using Rust Nightly Compiler10
6 – Incomplete Code10

METHODOLOGY11
Tools13

Vulnerability Scoring Systems13
CWE13

KUDELSKI SECURITY CONTACTS14

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 3 of 14

LIST OF FIGURES

Figure 1: Findings by Severity6

LIST OF TABLES

Table 1: Scope5
Table 2: Findings Overview8

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 4 of 14

EXECUTIVE SUMMARY

Overview

Beluga engaged Kudelski Security to perform a Smart Contract Secure Code Review.

The assessment was conducted remotely by the Kudelski Security Team. Testing took place from
July 25 to August 22, 2022 with a retest completed on September 7, 2022. These tests focused on
the following objectives:

• Provide the customer with an assessment of the Beluga DEX and Beluga DEX-Core and its
overall security posture and any risks that were discovered within the environment during the
engagement.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the security
measures that are in place.

• To identify potential issues and include improvement recommendations based on the result of our
tests.

This report summarizes the engagement, tests performed, and findings. It also contains detailed
descriptions of the discovered vulnerabilities, steps the Kudelski Security Teams took to identify and
validate each issue, as well as any applicable recommendations for remediation.

Key Findings

The following are the major themes and issues identified during the testing period. These, along with
other items, within the findings section, were prioritized for remediation and remediated accordingly.

• Bump Seed Canonicalization – The program does not validate the bump_seed parameter that is

supplied through the authority_id function call.

• Missing Empty String Check – The program does not check for valid string values when importing
environment variables

• Missing tests – Newly developed code and some features did not include adequate tests to
validate both the functionality and security of the application.

During the test, the following positive observations were noted regarding the scope of the
engagement:

• Selection of solana-program-library as the starting point of the application inherits a number of
security protections.

• The reviewed code bases responded well to traditional injection and other OWASP-style attacks,
with a few exceptions.

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 5 of 14

Scope and Rules of Engagement

Kudelski performed a Smart Contract Secure Code Review for Beluga. The following table
documents the targets in scope for the engagement. No additional systems or resources were in
scope for this assessment.

In-Scope Code Repository

https://github.com/Belugadex/Belugadex-core

Code Commit

Initial test commit - 28a7ac585e394fee7d75af93d84816eecd66ff0d

Re-test commit - 8de0d50630cef2079559de7a524df768d301cc8f

In-Scope Applications

Application Purpose

Beluga DEX – Beluga DEX-Core
A Decentralized Exchange for
Stable Coins and Pegged Assets

Table 1: Scope

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 6 of 14

TECHNICAL ANALYSIS & FINDINGS

During the Smart Contract Secure Code Review, we discovered three (3) medium-severity findings,
as well as one (1) low-severity finding. Retesting of the identified findings discovered that all issues
rated low or medium severity were resolved.

The following chart displays the findings by severity during the initial analysis.

Figure 1: Findings by Severity

0 1 2 3 4

Info

Low

Medium

High

Critical

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 7 of 14

Threat Analysis

This threat analysis section summarizes the threat scope and key threats identified during the code
review, which informed the secure code review analysis. It also contains descriptions of the threats
discovered and potential vulnerabilities as well as any applicable recommendations for remediation.

Threat Scope

Kudelski utilized the following Solana program application architecture descriptions and the provided
source code to identify threat boundaries, threat actors, and quantify possible threats to the provided
application source, its infrastructure, and supporting processes. To further refine this activity, threat
analysis to the various application components was scoped to actors targeting the provided
codebase.

Various trust boundaries were identified in the source code and Beluga and Solana developer
documentation, with special attention focused on internet-accessible boundaries, including user to
program interactions.

Threat Actors

During the secure code review, Kudelski considered several different threat actors that could target
the application. Of the identified threat actors, malicious external attackers were considered most
likely to target various application processes, users, and personnel. This is followed by malicious
insiders such as developers and anonymous internal and external users.

Threat Actor Observed Risk

Anonymous External Attacker Low

Anonymous Internal Attacker Low

Malicious External User High

Malicious Internal User Low

Malicious Employee Medium

Malicious Administrator Low

Malicious Developer High

Nation State Actor Low

Key Threats

- Manipulation of user-controlled addresses and amounts to bypass expected program controls.

- Use of outdated libraries and dependencies could introduce unexpected vulnerabilities and risk to
the program, especially given deployment to the public blockchain.

- As discussed in Beluga documentation, there is an impermanent-loss risk related to point-in-time
capital reflecting a lower value when tokens are committed to liquidity pools relative to the value
of tokens simply held in reserve.

- Publicly available functions within the program could be called unexpectedly or out-of-order to
cause confusion or bypass proper program checks.

https://docs.beluga.so/#0efd

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 8 of 14

Findings

The Findings section provides detailed information on each of the findings, including methods of
discovery, explanation of severity determination, recommendations, and applicable references.

The following table provides an overview of the findings.

Severity Description

1 Medium

Resolved

Bump Seed Canonicalization

2 Medium

Resolved

Missing Empty String Check

3 Medium

Resolved

Missing Tests

4 Low

Resolved

Using Components with Known Vulnerabilities

5 Informational Using Rust Nightly Compiler

6 Informational

Resolved

Incomplete Code

Table 2: Findings Overview

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 9 of 14

1 – Bump Seed Canonicalization

Severity Resolved

Impact Likelihood Difficulty

Medium Medium Moderate

Description

The program does not validate the bump_seed parameter that is supplied through the

authority_id function call.

2 – Missing Empty String Check

Severity Resolved

Impact Likelihood Difficulty

Medium Low Moderate

Description

The program does not check for valid string values when importing sensitive environment variables,

including the address where program gas fees are sent.

3 – Missing Tests

Severity Resolved

Impact Likelihood Difficulty

Medium High Moderate

Description

The reviewed source code contained some unit, integration, and fuzzing tests based upon the solana-
program-library implementation, but newly developed code and some features did not include
adequate tests to validate both the functionality and security of the application. In addition, the
reference implementation provided in the solana-program-library included more test helpers and tests
for curves than was included in the reviewed source.

4 – Using Components with Known Vulnerabilities

Severity Resolved

Impact Likelihood Difficulty

Low High Moderate

Description

Outdated or weak components are in use by the application. These components may be part of a

programming library or underlying platform. These weaknesses are commonly targeted by attackers

because of the publicly available information on these vulnerabilities.

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 10 of 14

5 – Using Rust Nightly Compiler

Severity INFORMATIONAL

Impact Likelihood Difficulty

Informational Low High

Description

The smart contract build process allowed for use of the rust-nightly binary to build the contract

for deployment.

6 – Incomplete Code

Severity Resolved

Description

The program has stubbed out code that does not have any functionality beyond returning Ok(()).

The program also contains // TODO comments relating to packing/unpacking and validation

functionality.

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 11 of 14

METHODOLOGY

Approach

Kudelski utilizes a standard methodology for assessments that is comprised of three phases:
information gathering, vulnerability identification, and reporting. Each phase feeds the next, but any
activity in later phases may inform additional research and testing. The activities are cyclical to
provide the analyst with working knowledge of the targeted properties for additional threat vectors.

Security methods in Cryptocurrency and Cryptocurrency Exchanges

In analyses of the threat vectors facing Cryptocurrency applications, source code, and exchanges,
Kudelski Security uses a testing regimen that follows a best-practices heuristic recognizing five likely
areas of security weaknesses specific to cryptocurrency: 1) Susceptibility to phishing; 2) Weak hot
wallet protections; 3) Broken Authorization class vulnerabilities related to login credentials of
individuals with privileged roles; 4) Software vulnerabilities; and 5) Transaction malleabilities.

General security checklists for Cryptocurrency Blockchain vulnerabilities are further informed by
chain-specific security concerns. In security reviews of Solana platform applications and codebases,
Kudelski reviews security controls relative to the eleven vulnerabilities laid out in coral-xyz’s Sealevel
Attacks github project: (1) Signer Authorization; (2) Account Data Matching, (3) Owner Checks, (4)
Type Cosplay, (5) Initialization, (6) Arbitrary CPI, (7) Duplicate Mutable Accounts, (8) Bump-Seed
Canonicalization, (9) PDA Sharing, (10) Closing Accounts, (11) sysvar Address Matching.

Kudelski continually updates reviewers’ knowledge base relative to blockchain vulnerabilities in
languages under review in open acknowledgment of Web3’s rapidly evolving context.

Information Gathering

Kudelski starts by reviewing application endpoints based on availability, application use-cases,
developer documentation, and application source code. These endpoints are analyzed for use,
potential parameters, additional attack surface, and possible threats. Applications are reviewed during
this phase from multiple points of view, including an anonymous, un-authenticated user, an
authenticated user, and an authenticated partner.

Kudelski analyzes available endpoints and source code during this phase for controls that affect
security posture, including authentication and authorization controls, logging behavior, communication
protocols, input handling, encryption settings, and other application behavior.

Vulnerability Identification

Kudelski uses the identified endpoints and controls of the identified assets to identify and explore
possible security vulnerabilities across applications based on our expertise in assessing application
flaws. Special attention will be paid to possible fraud and business logic flaws that could affect the
Client, its partners, or its customers.

Kudelski utilizes industry-standard vulnerability lists for assessment purposes, including OWASP’s
Application Security Verification Standard, the OWASP Top 10 Security Risks, and the SANS CWE
Top 25 Software Errors. These vulnerabilities are assessed across various security domains as they
apply to the targeted application. Additional attack surfaces and weaknesses may be noted during
this portion of the assessment for further research.

Security methods for assessing Decentralized Cryptographic Exchanges and Smart Contracts

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 12 of 14

In analyses of the threat vectors facing smart contracts and their applications, source code, and
exchanges, Kudelski begins with a testing regimen that follows a best-practices heuristic developed
out of overarching industry standards developed by the OWASP Top 10 and CWE-Mitre's Top 25
Most Dangerous Software Weaknesses. To ensure testing standards address common weaknesses
in decentralized cryptocurrency exchanges and smart contracts, Kudelski pays special attention to
vulnerabilities highlighted in the DASP-Top 10 (Decentralized Application Security Project – dasp.co),
Known Attacks enumerated by ConsenSys's Ethereum Smart Contract Best Practices
(https://consensys.github.io/smart-contract-best-practices/known_attacks/) and in consideration of the
Smart Contract Weakness Classification Registry (https://swcregistry.io/).

Reporting

To finalize the assessment activity, Kudelski documents the assessment vulnerabilities, endpoints,
and findings in a report that summarizes the results into actionable items for remediation by the
Client. Each finding documents the steps required to reproduce identified vulnerabilities and includes
recommendations for remediating or mitigating the threat.

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 13 of 14

Tools

The following tools were used during this portion of the test. A link for more information about the tool
is provided as well.

• Visual Studio Code - https://code.visualstudio.com

• Semgrep - https://semgrep.dev

• Dependency Check

• Cargo Audit

Vulnerability Scoring Systems

Kudelski Security utilizes commonly available vulnerability scoring systems and taxonomies to identify
and assign a risk severity to findings.

• Common Vulnerability Scoring System (CVSS)

• Common Weakness Enumeration (CWE)

• Open Web Application Security Project (OWASP)

CWE

The CWE system is a community-developed list of common software security weaknesses. It serves

as a common language, a measuring stick for software security tools, and as a baseline for weakness

identification, mitigation, and prevention efforts. Some common types of software weaknesses

classified by the CWE are:

• Buffer Overflows, Format Strings, etc.

• Structure and Validity Problems

• Common Special Element Manipulations

• Channel and Path Errors

• Handler Errors

• User Interface Errors

• Pathname Traversal and Equivalence Errors

• Authentication Errors

• Resource Management Errors

• Insufficient Verification of Data

• Code Evaluation and Injection

• Randomness and Predictability

https://semgrep.dev/

Beluga
Smart Contract Secure Code Review

© 2020 Kudelski Security, Inc. FOR PUBLIC RELEASE. All Rights Reserved. Version 1.1 | 9/7/2022

 Page 14 of 14

KUDELSKI SECURITY CONTACTS

NAME POSITION CONTACT INFORMATION

