
Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

TSS ECDSA CLI Secure Code

Review

Technical Report

Uniwire

19 May 2025

Version: 1.3

Kudelski Security – Nagravision Sàrl

Corporate Headquarters

Kudelski Security – Nagravision Sàrl

Route de Genève, 22-24

1033 Cheseaux sur Lausanne

Switzerland

For Public Release

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 4

1. PROJECT SUMMARY .. 5

1.1 Context .. 5

1.2 Scope .. 5

1.3 Remarks .. 6

1.4 Additional Note .. 6

1.5 Follow-up ... 6

2. TECHNICAL DETAILS OF SECURITY FINDINGS.. 7

2.1 KS-CHL-F-01 Logical Error of Small Factors Check .. 9

2.2 KS-CHL-F-02 Insufficient Authentication in Signing Room Access Control 9

2.3 KS-CHL-F-03 Error Message Contains Sensitive Information 9

2.4 KS-CHL-F-04 Lack of State Recovery and Session Management 10

2.5 KS-CHL-F-05 Dlog Proof Not Validated Properly ... 10

2.6 KS-CHL-F-06 Chain Code Not Validated Properly ... 11

2.7 KS-CHL-F-07 Message Hash Assumed Implicitly .. 11

2.8 KS-CHL-F-08 Safe Primes Not Used ... 12

2.9 KS-CHL-F-09 Boundary of System Parameters Not Checked............................ 12

2.10 KS-CHL-F-10 Error Handling with unwrap and expect 13

2.11 KS-CHL-F-11 Lack of Input Validation ... 13

2.12 KS-CHL-F-12 Total Parties Not Validated .. 13

2.13 KS-CHL-F-13 Party_number not Validated in signing_room.rs 14

2.14 KS-CHL-F-14 Party Index Not Counted Accurately .. 14

2.15 KS-CHL-F-15 Parsed Key Data Not Validated ... 14

2.16 KS-CHL-F-16 Unsafe HashMap Access .. 15

2.17 KS-CHL-F-17 HD Child Key Derivation Not Compliant to BIP32 15

2.18 KS-CHL-F-18 HD Child Private Key Not Used For EdDSA Signing 16

2.19 KS-CHL-F-19 EdDSA Key Clamp Not Applied Properly 16

2.20 KS-CHL-F-20 Input Parameter of check_sig Not Validated 16

2.21 KS-CHL-F-21 AES256 Key Length Not Checked ... 17

2.22 KS-CHL-F-22 Lack of Test Vectors .. 17

3. OBSERVATIONS .. 18

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

3.1 KS-CHL-O-01 Outdated Dependencies ... 19

3.2 KS-CHL-O-02 Best Secure Code Practice ... 19

3.3 KS-CHL-O-03 Security Concerns on GG18 over Ed25519 20

3.4 KS-CHL-O-04 Security Overview of Current Implementation 20

3.5 KS-CHL-O-05 Bitforge Attack and Prime Generation ... 21

3.6 KS-CHL-O-06 TSSHOCK Attack and Dlog Proof ... 21

4. METHODOLOGY .. 22

4.1 Kickoff.. 22

4.2 Ramp-up .. 22

4.3 Review ... 22

4.4 Reporting ... 23

4.5 Verify ... 23

5. VULNERABILITY SCORING SYSTEM ... 24

6. REFERENCES .. 26

7. CONCLUSION .. 27

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

EXECUTIVE SUMMARY

Uniwire (“the Client”) engaged Kudelski Security (“Kudelski”, “We”) to perform the TSS ECDSA

CLI Secure Code Review.

The assessment was conducted remotely by the Kudelski Security Team.

The review took place between 06 February 2025 and 26 February 2025, and focused on the

following objectives:

• Provide the customer with an assessment of their overall security posture and any risks

that were discovered.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the

security measures that are in place.

• To identify potential issues and include improvement recommendations based on the

result of our tests.

Key Findings

The following are the major themes and issues identified during the audit period. These, along

with other items within the findings section, should be prioritized for remediation to reduce to

the risk they pose.

• Logical Error of Small Factors Check

• Insufficient Authentication in Signing Room Access Control

• Lack of Input Validation

Findings ranked by severity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Informational

Low

Medium

High

Critical

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

1. PROJECT SUMMARY

This report summarizes the engagement, tests performed, and findings. It also contains

detailed descriptions of the discovered vulnerabilities, steps the Kudelski Security Team took

to identify and validate each issue, as well as any applicable recommendations for

remediation.

1.1 Context

The tss-ecdsa-cli is a wrapper CLI for a Rust implementation of (t,n)-threshold ECDSA

and EdDSA, including the support for HD keys (BIP32).

1.2 Scope

The scope consisted in specific Rust files and folders located at:

• Source code repository : https://github.com/uniwire/tss-ecdsa-cli/

o commit: ce7a6ca1a31e49198343e78514afbe44be261be3

The folders and files in scope are:

The goal of the evaluation was to perform a security audit on the source code.

src/

├── common

│ ├── hd_keys.rs

│ ├── manager.rs

│ ├── mod.rs

│ └── signing_room.rs

├── main.rs

├── protocols

│ ├── ecdsa

│ │ ├── curv7_conversion.rs

│ │ ├── keygen.rs

│ │ ├── mod.rs

│ │ └── signer.rs

│ ├── eddsa

│ │ ├── keygen.rs

│ │ ├── mod.rs

│ │ ├── signer.rs

│ │ └── test.rs

│ └── mod.rs

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

• No additional systems or resources were in scope for this assessment.

• The dependencies are out of scope of the review.

• Test codes are out of scope.

1.3 Remarks

During the code review, the following positive observations were noted regarding the scope of

the engagement:

• The code is well structured.

• Quick and open communication via Teams

• The developers have made a careful and in-depth analysis of their project.

• We had regular and enriching technical exchanges on various topics.

1.4 Additional Note

It is important to notice that, although we did our best in our analysis, no code audit

assessment is per se guarantee of absence of vulnerabilities. Our effort was constrained by

resource and time limits, along with the scope of the agreement.

In assessing the severity of some of the findings we identified, we kept in mind both the ease

of exploitability and the potential damage caused by an exploit.

While assessing the severity of the findings, we considered the impact, ease of exploitability,

and the probability of attack. This is a solid baseline for severity determination. Information

about the severity ratings can be found in Chapter Vulnerability Scoring System of this

document.

1.5 Follow-up

After the initial report (V1.0) was delivered, the Client addressed or acknowledged all

vulnerabilities and weaknesses in the following codebase revision:

• feature/audit_applied (commit: ff90e9ff867549656bf9a2b39d0010dd648715b8)

https://github.com/uniwire/tss-ecdsa-cli/tree/feature/audit_applied
https://github.com/uniwire/tss-ecdsa-cli/commit/ff90e9ff867549656bf9a2b39d0010dd648715b8

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

2. TECHNICAL DETAILS OF SECURITY FINDINGS

This chapter provides detailed information on each of the findings, including methods of

discovery, explanation of severity determination, recommendations, and applicable

references.

The following table provides an overview of the security findings.

SEVERITY TITLE STATUS

KS-CHL-F-01 High Logical Error of Small Factors Check Resolved

KS-CHL-F-02 High Insufficient Authentication in Signing Room
Access Control

Resolved

KS-CHL-F-03 Medium Error Message Contains Sensitive
Information

Resolved

KS-CHL-F-04 Low Lack of State Recovery and Session
Management

Acknowledged

KS-CHL-F-05 Medium Dlog Proof Not Validated Properly Resolved

KS-CHL-F-06 Medium Chain Code Not Validated Properly Resolved

KS-CHL-F-07 Medium Message Hash Assumed Implicitly Resolved

KS-CHL-F-08 Low Safe Primes Not Used Resolved

KS-CHL-F-09 Low Boundary of System Parameters Not
Checked

Resolved

KS-CHL-F-10 Low Error Handling with unwrap and expect Resolved

KS-CHL-F-11 Low Lack of Input Validation Resolved

KS-CHL-F-12 Low Total Parties Not Validated Resolved

KS-CHL-F-13 Low Party_number not Validated in
signing_room.rs

Resolved

KS-CHL-F-14 Low Party Index Not Counted Accurately Resolved

KS-CHL-F-15 Low Parsed Key Data Not Validated Resolved

KS-CHL-F-16 Low Unsafe HashMap Access Resolved

KS-CHL-F-17 Low HD Child Key Derivation Not Compliant to
BIP32

Acknowledged

KS-CHL-F-18 Low HD Child Private Key Not Used For EdDSA
Signing

Resolved

KS-CHL-F-19 Low EdDSA Key Clamp Not Applied Properly Resolved

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

SEVERITY TITLE STATUS

KS-CHL-F-20 Low Input Parameter of check_sig Not Validated Resolved

KS-CHL-F-21 Low AES256 Key Length Not Checked Resolved

KS-CHL-F-22 Low Lack of Test Vectors Acknowledged

Findings overview.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

2.1 KS-CHL-F-01 Logical Error of Small Factors Check

Severity Impact Likelihood Status

High High High Resolved

Description

The variable failed is initialized to false. Hence, the following logical operation returns

always false: false && is_divisible_by_first_n_primes.

2.2 KS-CHL-F-02 Insufficient Authentication in Signing Room Access

Control

Severity Impact Likelihood Status

High High Low Resolved

Description

The signing room protocol lacks proper authentication for party membership both during

signup and signing phases. The only validation relies on party_number and auto-generated

party_uuid pairs, without any cryptographic verification of the party's identity or

authorization.

2.3 KS-CHL-F-03 Error Message Contains Sensitive Information

Severity Impact Likelihood Status

Medium High Low Resolved

Description

The /get endpoint in manager.rs returns error messages that include the requested key

value when a key is not found. This verbose error handling could help attackers enumerate

valid keys and gather information about active signing sessions. This can help attacker to

gather the information about Active party numbers, Active rounds and, Valid UUIDs.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

2.4 KS-CHL-F-04 Lack of State Recovery and Session Management

Severity Impact Likelihood Status

Low Low High Acknowledged

Description

The current implementation of the protocol lacks robust state recovery and session

management mechanisms. When parties timeout or disconnect during the signing

process, this is impossible to recover or resume the process.

2.5 KS-CHL-F-05 Dlog Proof Not Validated Properly

Severity Impact Likelihood Status

Medium High Low Resolved

Description

In the ECDSA sign function, the dlog proof is generated and broadcasted in the phase 5.

However, the vector phase_5a_dlog_vec is not validated after received.

In a nutshell, the dlog proof is based on a non-interactive Schnorr protocol with Fiat-Shamir

transformation as follows:

Prover: r, u=g*r, y=g*x, c=H(u,g,y), z=r-c*x -> broadcasts (y,u,z)

Verifier: c=H(u,g,y), v = g*z+y*c = g*(r-c*x)+y*c = g*r–g*c*x+y*c=g*r=g*r

If phase_5a_dlog_vec is zero (point at infinity), i.e., y=u=z=0, then v=0. Since v=u, the

verification is successful.

Similarly, the function verify_dlog_proofs does not validate the input parameters. If all

values in dlog_proofs_vec are zero, it could be verified. In addition, if share_count =

y_vec_len = dlog_proofs_vec.len = 0, it does not execute DLogProof::verify,

so that any proof could be verified.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

2.6 KS-CHL-F-06 Chain Code Not Validated Properly

Severity Impact Likelihood Status

Medium High Low Resolved

Description

The chain code is used to introduce deterministic random data to the HD key derivation, so

that knowing the index and a child key is not sufficient to derive a child key. If

chain_code_in_env is not empty, the variable chain_code is initialized by an

environmental variable chain_code_in_env regardless of the value derived from the key

file.

If this env variable is set to 0 or a known value by chance, the child public key and f_l_new

can be derived by anyone. If the HD key is supported, chain_code is updated once again

by chain_code = g * chain_code, but it is still constant. Hence, no entropy is added to

the HD child key derivation.

2.7 KS-CHL-F-07 Message Hash Assumed Implicitly

Severity Impact Likelihood Status

Medium Low High Resolved

Description

The first step to sign with ECDSA is to hash the message. The function sign assumes the

input message is already hashed by the signer, as commented. However, such requirement

is not given in the main function. Furthermore, if message is not a hashed message, then the

sign function is vulnerable to the forgery attack.

Suppose q is the multiplicative group order over secp256k1. Then, if (r,s) is a valid

signature for the message, then (r,s) is also valid for the message message + i*q,

where i=1,2,..., since message + i*q is reduced modulo 2256, then further mapped to

a point over secp256k1, which results in the same value as message.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

2.8 KS-CHL-F-08 Safe Primes Not Used

Severity Impact Likelihood Status

Low High Low Resolved

Description

The function create is used to generate party_keys, but safe primes are not used. In the

GG18 paper, it is recommended to use safe primes for strong RSA because the security of

ZK proof is based on the assumption that the Prover cannot solve the Strong RSA problem

over N.

2.9 KS-CHL-F-09 Boundary of System Parameters Not Checked

Severity Impact Likelihood Status

Low High Low Resolved

Description

The GG18 protocol is for (t,n) threshold signature, that is, n ≥ t + 1 and only t + 1 players are

needed to sign. However, the bound of critical parameters is not checked. They should satisfy

the following conditions:

• 1 <= THRESHOLD < PARTIES <= MAX_ALLOWD_PARTIES

• 1 <= party_num_int <= PARTIES

Here, MAX_ALLOWD_PARTIES can be set as an environment variable.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

2.10 KS-CHL-F-10 Error Handling with unwrap and expect

Severity Impact Likelihood Status

Low Medium Low Resolved

Description

The code uses unwrap and expect extensively, which can cause the program to panic and

crash if an error occurs. This approach does not provide a graceful way to handle errors and

can lead to unexpected program termination.

2.11 KS-CHL-F-11 Lack of Input Validation

Severity Impact Likelihood Status

Low High Low Resolved

Description

Since the key generation, the HD key derivation, and the signing function are executed

separately, it is important to validate the input parameters of the functions properly, in

particular, for the functions declared as “pub fn”. Although the GG18 protocol will stop and

abort if the input data are not valid, there exists a risk that legitimate users may leak their

valuable information to an adversary before being aborted. Input validation is the first line of

defence to reduce such risk.

2.12 KS-CHL-F-12 Total Parties Not Validated

Severity Impact Likelihood Status

Low High Low Resolved

Description

In the function signup, total_parties is not checked whether it is greater than the input

parameter threshold. The (t,n) threshold signature is valid only when total_parties is

greater than threshold.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

2.13 KS-CHL-F-13 Party_number not Validated in signing_room.rs

Severity Impact Likelihood Status

Low Low Low Resolved

Description

The SigningRoom implementation lacks proper validation of party numbers during party

addition, potentially leading to protocol inconsistencies and security vulnerabilities. The

function add_party() accepts any u16 value without validation against room size or other

constraints, and performs unsafe integer conversions.

2.14 KS-CHL-F-14 Party Index Not Counted Accurately

Severity Impact Likelihood Status

Low Low Low Resolved

Description

The variable total_parties is used to count the number of participants in the function

signup. Although the signature is valid if total_parties == threshold + 1 , it is more

accurate and consistent to use total_parties instead of threshold + 1 in the (t,n)

threshold signature.

2.15 KS-CHL-F-15 Parsed Key Data Not Validated

Severity Impact Likelihood Status

Low High Low Resolved

Description

The key data are loaded from the key file, but they are not validated. Although it is assumed

that the key data are stored in a safe place, it would be always recommended to check if the

loaded key data are valid since they are critical for the system security.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

2.16 KS-CHL-F-16 Unsafe HashMap Access

Severity Impact Likelihood Status

Low Low Low Resolved

Description

The SigningRoom implementation uses unsafe HashMap access patterns with multiple

unwrap() calls. The code assumes party existence without proper validation, which can lead

to runtime panics and potential denial of service vulnerabilities

2.17 KS-CHL-F-17 HD Child Key Derivation Not Compliant to BIP32

Severity Impact Likelihood Status

Low High Low Acknowledged

Description

The function hd_key is used to derive a HD child key for both ECDSA and EdDSA. Although

the derived child key could be used for signing, this function is proprietary and not compliant

to BIP32, which has limitation to extend the service, and may lead to a unknown attack in the

future.

Also, this function does not consider the key clamping for the EdDSA key which is defined in

RFC 8032. Since f_l_new has no guarantee on its highest bits set or cleared, or the lowest

three bits cleared, thus the addition of f_l_new to the private key may cause a small cofactor

vulnerability.

Note that the party keys are immune to this issue since they are created with the key clamping

by the function create_from_private_key. This function is called internally from the

function phase1_create.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

2.18 KS-CHL-F-18 HD Child Private Key Not Used For EdDSA Signing

Severity Impact Likelihood Status

Low Low Low Resolved

Description

The function hd_key is used to derive the public child key and f_l_new for EdDSA. Since

hd_key does not take any private information, the child public key and f_l_new can be

derived by anyone who knows the chain code. Later, f_l_new is used to update the signature

without updating the private key. Although the signature can be verified in this manner, it does

not make much sense to use the child key because the child private key is not really used for

EdDSA signing. This is not the case for ECDSA where the private key is updated and used

for signing process.

2.19 KS-CHL-F-19 EdDSA Key Clamp Not Applied Properly

Severity Impact Likelihood Status

Low Low Low Resolved

Description

The function update_hd_derived_public_key is to clamp the EdDSA public key.

However, according to RFC 8032, Section 5.1.5, the private key or a secret scala should be

clamped to avoid the small subgroup attack. The public key is not relevant to this attack.

2.20 KS-CHL-F-20 Input Parameter of check_sig Not Validated

Severity Impact Likelihood Status

Low Low High Resolved

Description

The function check_sig is not applicable for the general ECDSA verification. The message

length is implicitly limited to 32 bytes, otherwise an overflow occurs. Also, if msg could be an

arbitrary message, then an adversary can set the input parameters as follows: msg = 0 mod

q, (r,s) = (a, a), where a is the x-coordinate of pk. Then u1 = zs^-1 = O, and u2

= rs^-1 = 1, so that the curve point (x,y) = u1*g + u2*pk = pk. Hence, the signature

is valid since r=a=x. This type of vulnerability can be generalized as presented in the

reference below.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

2.21 KS-CHL-F-21 AES256 Key Length Not Checked

Severity Impact Likelihood Status

Low High Low Resolved

Description

The function aes_encrypt encrypts the plaintext using the key which is given as an input

parameter. However, the key is not validated upfront. The key should not be NULL, and the

key length is supposed to be 32 bytes since the AES256 GCM mode is used for encryption.

Due to the same reason, the length of vector enc_keys should be 32 bytes.

2.22 KS-CHL-F-22 Lack of Test Vectors

Severity Impact Likelihood Status

Low High Low Acknowledged

Description

According to the cargo llvm-cov tool (v0.6.10), the overall test coverage of code in

scope reaches less than 6%.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

3. OBSERVATIONS

This chapter contains additional observations that are not directly related to the security of the

code, and as such have no severity rating or remediation status summary. These observations

are either minor remarks regarding good practice or design choices or related to

implementation and performance. These items do not need to be remediated for what

concerns security, but where applicable we include recommendations.

SEVERITY TITLE STATUS

KS-CHL-O-01 Informational Outdated Dependencies Informational

KS-CHL-O-02 Informational Best Secure Code Practice Informational

KS-CHL-O-03 Informational Security Concerns on GG18 over
Ed25519

Informational

KS-CHL-O-04 Informational Security Overview of Current
Implementation

Informational

KS-CHL-O-05 Informational Bitforge Attack and Prime Generation Informational

KS-CHL-O-06 Informational TSSHOCK Attack and Dlog Proof Informational

Observations overview.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

3.1 KS-CHL-O-01 Outdated Dependencies

Description

The cargo audit (v0.21.0) tool identified 10 vulnerabilities and 9 allowed warnings on

dependencies. Among those, the following dependencies contain vulnerabilities.

3.2 KS-CHL-O-02 Best Secure Code Practice

Description

• The variable _index and _cc_new are not used at all.

• The variable keysfile_path is double referenced in src/protocols/ecdsa/

keygen.rs, while it is single referenced in src/protocols/eddsa/keygen.rs.

• The variable chain_code is set by chain_code_in_env, and used as an initialized

value for the ECDSA keygen. However, it is not used for the EdDSA.

• The function verify is redundant because it is already verified internally in the

function output_signature.

• It is not clear why the function update_hd_derived_public_key is needed.

According to RFC 8032, the private key (or scalar) should be clamped, not the public

key.

• Some functions are unnecessarily declared as “pub fn” although they are used within

a module.

• The delay value is hard-coded as a magic number (25ms, 100ms or 250ms), which

could be flexible, depending on the use cases. It is recommended to set them from an

env variable.

• The function run_keygen is too long: 248 lines for ECDSA and 250 lines EdDSA.

Also, the function sign in ecdsa is even longer: 547 lines. They could be divided into

several sub-functions based on the phases to improve the readability and testability.

• The function generate_shared_chain_code is used in both ECDSA and EdDSA.

However, exchange_data is actually located under EdDSA folder, so there is

dependency between ECDSA and EdDSA folders.

• The name of repository tss-ecdsa-cli is misleading since this cli utility supports

not only ECDSA, but also EdDSA, in particular, Ed25519.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

3.3 KS-CHL-O-03 Security Concerns on GG18 over Ed25519

Description

GG18 was specifically designed for ECDSA with security proof. However, it is not directly

applicable to Ed25519, which could raise some security considerations. Ed25519 uses a

different signing equation than ECDSA and relies on different mathematical properties. There

is no security proof on the GG18 over EdDSA.

Some key differences between GG18 over Ed25519 and ECDSA include:

• GG18 relies on Paillier encryption during distributed key generation. The homomorphic

properties used in GG18 are specifically designed for ECDSA's multiplicative structure.

The MtA (multiplicative-to-additive) conversion that GG18 uses for ECDSA is not

required to Ed25519's signing equation.

• The zero-knowledge proofs in GG18 are constructed for ECDSA's mathematical

relationships, which is not really needed for EdDSA.

• Side-Channel Vulnerabilities Ed25519 was designed to be resistant to certain side-

channel attacks through constant-time operations. The GG18 protocol modifications

required for Ed25519 might reintroduce timing dependencies that Ed25519 was

specifically designed to avoid.

• Multiple projects for GG18 over EdDSA have been developed but not maintained

anymore.

Therefore, it would be safer to use protocols specifically designed for EdDSA, for example,

Frost in the future.

3.4 KS-CHL-O-04 Security Overview of Current Implementation

Description

The current code was developed based on the Kzen multiparty ecdsa / eddsa library which

were originally created to enable users to experiment with protocols. The keygen and signing

protocols are currently implemented based on examples and test codes which are obviously

not suitable for production.

The HD key derivation function is proprietary, not based on the standard BIP32 specification.

The code was forked from here, which does not provide any security proof. The code is

somehow similar to the function derive_tweak in the BIP32 repository where a tweak value

can be derived to generate the child key.

https://github.com/trepca/multi-party-ecdsa/blob/feab579679712018493e0597a7217815a4c143fb/src/bin/gg18_sign_client.rs#L68
https://github.com/iqlusioninc/crates/blob/e08a6b4f5cb05365b19a4380d763da28defb96b6/bip32/src/public_key.rs#L51

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

3.5 KS-CHL-O-05 Bitforge Attack and Prime Generation

Description

GG18 uses the Paillier cryptosystem for additive homomorphic properties. When setting up

the Paillier cryptosystem, each participant generates two large prime numbers (p, q) as their

private key, and then N = p * q as their public key.

The specification of the GG18 threshold ECDSA signature protocol may be vulnerable when

a malicious signer is able to use a modulus N containing small factors (say, less than 2^20)

i.e. N = small_prime_1 * small_prime_2 * ... * q, and none of the other participants

check, which allowing an attacker to recover the shared secret key. The master key can then

be reconstructed from these shares.

This attack is protected by checking whether N is divisible by the first n primes. However,

• it is not explained why primes up to 2^25 is chosen;

• a proprietary prime generation function is used.

3.6 KS-CHL-O-06 TSSHOCK Attack and Dlog Proof

Description

The TSSHOCK vulnerabilities stem from implementation mistakes in the range proof

subprotocol dlog proof, allowing malicious actors to forge proofs and potentially recover private

keys. According to the TSSHOCK article (see Reference below), Zengo-X multi-party ECDSA

is claimed to be vulnerable to this attack, hence, by nature, this is of concern on the code in

scope.

In the ECDSA sign function, the dlog proof is generated in phase 5. It is actually a non-

interactive Schnorr protocol with Fiat-Shamir transformation, where the c-split attack is not

directly applicable. In theory, a malicious party could choose a rho in such a way that the proof

could be forged without knowing the secret key. The vulnerability could be exploited to recover

the private key of the party. However, it seems not feasible in the protocol level since the rho

is randomly chosen in the library.

Note that this attack is not applicable to the EdDSA because there is no MtA conversion there,

hence, neither the range proof nor the dlog proof is required.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

4. METHODOLOGY

For this engagement, Kudelski Security used a methodology that is described at a high level

in this chapter. This is broken up into the following phases.

4.1 Kickoff

The Kudelski Security Team set up a kickoff meeting where project stakeholders were

gathered to discuss the project as well as the responsibilities of participants. During this

meeting, we verified the scope of the engagement and discussed the project activities.

4.2 Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular project.

This included the steps required for gaining familiarity with the codebase and technological

innovations utilized.

4.3 Review

The review phase is where most of the work on the engagement was performed. In this

phase we have analyzed the project for flaws and issues that could impact the security

posture. The review for this project was performed using manual methods and utilizing the

experience of the reviewer. No dynamic testing was performed, only the use of custom-built

scripts and tools was used to assist the reviewer during the testing. We discuss our

methodology in more detail in the following subsections.

Code Review

Kudelski Security Team reviewed the code within the project utilizing an appropriate IDE.

During every review, the team spends considerable time working with the client to determine

correct and expected functionality, business logic, and content, to ensure that findings

incorporate this business logic into each description and impact. Following this discovery

phase, the team works through the following categories:

• authentication (e.g. A07:2021, CWE-306)

• authorization and access control (e.g. A01:2021, CWE-862)

• auditing and logging (e.g. A09:2021)

• injection and tampering (e.g. A03:2021, CWE-20)

• configuration issues (e.g. A05:2021, CWE-798)

• logic flaws (e.g. A04:2021, CWE-190)

• cryptography (e.g. A02:2021)

Kickoff Ramp-up Review Report Verify

https://owasp.org/Top10/en/A07_2021-Identification_and_Authentication_Failures/
https://cwe.mitre.org/data/definitions/306.html
https://owasp.org/Top10/en/A01_2021-Broken_Access_Control/
https://cwe.mitre.org/data/definitions/862.html
https://owasp.org/Top10/en/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/en/A03_2021-Injection/
https://cwe.mitre.org/data/definitions/20.html
https://owasp.org/Top10/en/A05_2021-Security_Misconfiguration/
https://cwe.mitre.org/data/definitions/798.html
https://owasp.org/Top10/en/A04_2021-Insecure_Design/
https://cwe.mitre.org/data/definitions/190.html
https://owasp.org/Top10/en/A02_2021-Cryptographic_Failures/

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

These categories incorporate common weaknesses and vulnerabilities such as the OWASP

Top 10 and MITRE Top 25.

Cryptography

We analyze the cryptographic primitives and components as well as their implementation. We

check in particular:

• matching of the proper cryptographic primitives to the desired cryptographic

functionality needed

• security level of cryptographic primitives and their respective parameters (key lengths,

etc.)

• safety of the randomness generation in general as well as in the case of failure

• safety of key management

• assessment of proper security definitions and compliance to use cases

• checking for known vulnerabilities in the primitives used

4.4 Reporting

Kudelski Security delivered to the Client a preliminary report in PDF format that contained an

executive summary, technical details, and observations about the project.

In the report we not only point out security issues identified but also observations for

improvement. The findings are categorized into several buckets, according to their overall

severity: Critical, High, Medium, Low.

Observations are considered to be Informational. Observations can also consist of code

review, issues identified during the code review that are not security related, but are general

best practices and steps, that can be taken to lower the attack surface of the project.

The technical details are aimed more at developers, describing the issues, the severity ranking

and recommendations for mitigation.

4.5 Verify

After the preliminary findings have been delivered, we verify the fixes applied by the Client.

After these fixes were verified, we updated the status of the finding in the report.

The output of this phase is the final report with any mitigated findings noted.

https://owasp.org/Top10/en/
https://owasp.org/Top10/en/
https://cwe.mitre.org/top25/

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

5. VULNERABILITY SCORING SYSTEM

Kudelski Security utilizes a custom approach when computing the vulnerability score, based

primarily on the Impact of the vulnerability and Likelihood of an attack.

Each metric is assigned a ranking of either low, medium or high, based on the criteria defined

below. The overall severity score is then computed as described in the next section.

Severity

Severity is the overall score of the finding, weakness or vulnerability as computed from Impact

and Likelihood. Other factors, such as availability of tools and exploits, number of instances

of the vulnerability and ease of exploitation might also be taken into account when computing

the final severity score.

 IMPACT

LIKELIHOOD

LOW

MEDIUM

HIGH

HIGH MEDIUM HIGH HIGH

MEDIUM LOW MEDIUM HIGH

LOW LOW LOW MEDIUM

Compute overall severity from Impact and Likelihood. The final severity factor might vary depending on a

project's specific context and risk factors.

• Critical The identified issue may be immediately exploitable, causing a strong and

major negative impact system-wide. They should be urgently remediated or mitigated.

• High The identified issue may be directly exploitable causing an immediate negative

impact on the users, data, and availability of the system for multiple users.

• Medium The identified issue is not directly exploitable but combined with other

vulnerabilities may allow for exploitation of the system or exploitation may affect

singular users. These findings may also increase in severity in the future as techniques

evolve.

• Low The identified issue is not directly exploitable but raises the attack surface of the

system. This may be through leaking information that an attacker can use to increase

the accuracy of their attacks.

• Informational findings are best practice steps that can be used to harden the

application and improve processes. Informational findings are not assigned a severity

score and are classified as Informational instead.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

Impact

The overall effect of the vulnerability against the system or organization based on the areas

of concern or affected components discussed with the client during the scoping of the

engagement.

• High The vulnerability has a severe effect on the company and systems or has an

effect within one of the primary areas of concern noted by the client.

• Medium It is reasonable to assume that the vulnerability would have a measurable

effect on the company and systems that may cause minor financial or reputational

damage.

• Low There is little to no effect from the vulnerability being compromised. These

vulnerabilities could lead to complex attacks or create footholds used in more severe

attacks.

Likelihood

The likelihood of an attacker discovering a vulnerability, exploiting it, and obtaining a foothold

varies based on a variety of factors including compensating controls, location of the

application, availability of commonly used exploits, difficulty of exploitation and institutional

knowledge.

• High It is extremely likely that this vulnerability will be discovered and abused.

• Medium It is likely that this vulnerability will be discovered and abused by a skilled

attacker.

• Low It is unlikely that this vulnerability will be discovered or abused when discovered.

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

6. REFERENCES

• Fast Multiparty Threshold ECDSA with Fast Trustless Setup

• https://github.com/ZenGo-X/multi-party-ecdsa

• https://github.com/ZenGo-X/multi-party-eddsa

• Crate Multi-party ECDSA

• https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

• BIP32-Ed25519 Hierarchical Deterministic Keys over a Non-linear Keyspace

• https://www.fireblocks.com/blog/gg18-and-gg20-paillier-key-vulnerability-technical-

report

• https://verichains.io/tsshock/

https://eprint.iacr.org/2019/114
https://github.com/ZenGo-X/multi-party-ecdsa
https://github.com/ZenGo-X/multi-party-eddsa
https://crates.io/crates/multi-party-ecdsa
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://input-output-hk.github.io/adrestia/static/Ed25519_BIP.pdf
https://www.fireblocks.com/blog/gg18-and-gg20-paillier-key-vulnerability-technical-report
https://www.fireblocks.com/blog/gg18-and-gg20-paillier-key-vulnerability-technical-report
https://verichains.io/tsshock/

Uniwire | TSS ECDSA CLI Secure Code Review

19 May 2025

7. CONCLUSION

The objective of this code review was to evaluate the overall security of the code base and

identify any vulnerabilities that would put the product at risk.

The Kudelski Security Team identified 22 security issues: 2 high risks, 4 medium risks, and

16 low risks. On average, the effort needed to mitigate these risks is estimated as medium.

In order to mitigate the risks posed by this engagement’s findings, the Kudelski Security Team

recommends applying the following best practices:

• Fix the logical errors.

• Authenticate parties to access the signing room.

• Validate the input parameters of public functions.

• Derive the HD keys compliant to BIP32.

The Client addressed or acknowledged all these vulnerabilities and observations in the follow-

up revision of the codebase.

Kudelski Security remains at your disposal should you have any questions or need further

assistance.

Kudelski Security would like to thank Uniwire for their trust, help and support over the course

of this engagement and is looking forward to cooperating in the future.

