

Secure Code Review of FROST

Technical Report

Lit Protocol

21 June 2024

Version: 1.1

Kudelski Security – Nagravision Sàrl

Corporate Headquarters

Kudelski Security – Nagravision Sàrl

Route de Genève, 22-24

1033 Cheseaux sur Lausanne

Switzerland

For Public Release

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 2 of 29

For Public Release

Copyright Notice

Kudelski Security, a business unit of Nagravision Sàrl, is a member of the Kudelski Group of Companies.

This document is the intellectual property of Kudelski Security and contains confidential and privileged

information. The reproduction, modification, or communication to third parties (or to other than the addressee)

of any part of this document is strictly prohibited without the prior written consent from Nagravision Sàrl.

DOCUMENT PROPERTIES

Version: 1.1

File Name: Kudelski_Security_Lit_Protocol_Secure_Code_Review_of_FROST
_v1.1_Final.pdf

Publication Date: 21 June 2024

Confidentiality Level: For Public Release

Document Status: Approved

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 3 of 29

For Public Release

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 5

1. PROJECT SUMMARY .. 6

1.1 Context .. 6

1.2 Scope .. 6

1.3 Follow-up ... 6

1.4 Remarks .. 6

1.5 Additional Note .. 6

2. TECHNICAL DETAILS OF SECURITY FINDINGS ... 8

2.1 KS–LPF–F–1 Possible Timing Attack in is_identity Macro 9

2.2 KS–LPF–F–2 Missing Zeroization .. 11

2.3 KS–LPF–F–3 Missing Input Validation for Bytes of Identifier converting to u8 .. 13

3. OTHER OBSERVATIONS... 15

3.1 KS–LPF–O–1 Source Code Can panic! in Certain Cases 16

3.2 KS–LPF–O–2 Dead Code .. 17

3.3 KS–LPF–O–3 Linting Warnings Regarding Closure in Macro Invocations 17

3.4 KS–LPF–O–4 Reference Specification is not yet Finalized 18

3.5 KS–LPF–O–5 No Security Policy ... 18

3.6 KS–LPF–O–6 Hard-Coded Constants ... 19

3.7 KS–LPF–O–7 Scalar Size Mismatch ... 20

3.8 KS–LPF–O–8 Casting u16 Threshold Signers into u8 20

3.9 KS–LPF–O–9 Incorrect Error Message String ... 20

3.10 KS–LPF–O–10 Dependencies Use Encodings Inconsistent with Standard 21

3.11 KS–LPF–O–11 Taproot Requires Prehashing of Messages 21

3.12 KS–LPF–O–12 Multiple Signature Lengths Supported for k256::schnorr::Signature

 .. 22

3.13 KS–LPF–O–13 Incorrect Function Name ... 22

4. METHODOLOGY .. 24

4.1 Kickoff .. 24

4.2 Ramp-up .. 24

4.3 Review ... 24

4.4 Reporting ... 25

4.5 Verify ... 25

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 4 of 29

For Public Release

5. VULNERABILITY SCORING SYSTEM ... 26

6. CONCLUSION .. 28

KUDELSKI SECURITY CONTACTS ... 29

DOCUMENT HISTORY .. 29

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 5 of 29

For Public Release

EXECUTIVE SUMMARY

Lit Protocol (“the Client”) engaged Kudelski Security (“Kudelski”, “we”) to perform a Secure

Code Review of FROST.

The assessment was conducted remotely by the Kudelski Security Team.

The review took place between 06 May 2024 and 11 June 2024, and focused on the following

objectives:

• Provide the customer with an assessment of their overall security posture and any risks

that were discovered.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the

security measures that are in place.

• To identify potential issues and include improvement recommendations based on the

result of our tests.

Key Findings

The following are the major themes and issues identified during the testing period.

These, along with other items within the findings section, should be prioritized for remediation

to reduce to the risk they pose.

• Lack of zeroization for custom types.

• Incorrectly implemented mitigation of timing attacks.

Findings ranked by severity.

0 2 4 6 8 10 12 14

Informational

Low

Medium

High

Critical

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 6 of 29

For Public Release

1. PROJECT SUMMARY

This report summarizes the engagement and contains detailed descriptions of the discovered

vulnerabilities, steps the Kudelski Security Team took to identify and validate each issue, as

well as any applicable recommendations for remediation.

1.1 Context

The source code in scope is an implementation of FROST, a Schnorr-based threshold

signature scheme.

1.2 Scope

The scope consisted in specific Rust files and folders located at:

• Commit hash: 45bcdc3cc97eb4d7ee600986ef983cfae2b781b2

• Source code repository: lit-frost (https://github.com/LIT-Protocol/lit-

frost/tree/45bcdc3cc97eb4d7ee600986ef983cfae2b781b2)

The files and folders in scope are the Rust (.rs) files located in the src/ folder of the above

repository.

1.3 Follow-up

After the initial report, Lit Protocol addressed the vulnerabilities and weaknesses in the

following codebase revision:

• Commit hash: e3550520ac4569e44b83c4f56d09449b653f2074

1.4 Remarks

During the code review, the following positive observations were noted regarding the scope of

the engagement:

• The source code is nicely structured and defensively coded.

• Tests were also provided as part of the project, which is convenient for better

understanding how the library works and useful for elaborating scenarios and

validating findings.

• Finally, we had regular and very enriching technical exchanges on various topics.

1.5 Additional Note

It is important to notice that, although we did our best in our analysis, no code audit

assessment is per se guarantee of absence of vulnerabilities. Our effort was constrained by

resource and time limits, along with the scope of the agreement.

In assessing the severity of some of the findings we identified, we kept in mind both the ease

of exploitability and the potential damage caused by an exploit.

While assessing the severity of the findings, we considered the impact, ease of exploitability,

and the probability of attack. This is a solid baseline for severity determination. Information

https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
https://github.com/LIT-Protocol/lit-frost/tree/45bcdc3cc97eb4d7ee600986ef983cfae2b781b2
https://github.com/LIT-Protocol/lit-frost/tree/45bcdc3cc97eb4d7ee600986ef983cfae2b781b2

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 7 of 29

For Public Release

about the severity ratings can be found in Chapter Vulnerability Scoring System of this

document.

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 8 of 29

For Public Release

2. TECHNICAL DETAILS OF SECURITY FINDINGS

This chapter provides detailed information on each of the findings, including methods of

discovery, explanations of severity determination, recommendations, and applicable

references. The following table provides an overview of the findings.

SEVERITY TITLE STATUS

KS–LPF–F–1 Low Possible Timing Attack in is_identity

Macro

Resolved

KS–LPF–F–2 Low Missing Zeroization Resolved

KS–LPF–F–3 Low Missing Input Validation for Bytes of
Identifier to u8

Resolved

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 9 of 29

For Public Release

2.1 KS–LPF–F–1 Possible Timing Attack in is_identity Macro

Severity Impact Likelihood Status

Low Low Low Resolved

Description

The macro is_identity_impl evaluates whether all the elements in the .value array are

zeros. In addition, it uses subtle::Choice, indication the intention to make this function

resistant to timing attacks. However, this may not be the case. This is because, according to

the Rust documentation [2], the .all() method evaluates lazily and might return early.

After discussion with Lit Protocol, it was clarified that the macro was implemented only for

public values such as the verifying key. These values are not secret, so they pose no security

issue in using the is_identity macro as it is.

Impact

This can open up the possibility of timing attacks. A timing attack is a type of side channel

attack, where an adversary attempts to obtain sensitive information (such as a secret key) by

measuring the execution time of various functions. If the execution time of the targeted function

varies depending on its (secret) input, that will leak information to the adversary.

Evidence

macro_rules! is_identity_impl {

 () => {

 /// Returns true if this value is zero.

 pub fn is_identity(&self) -> subtle::Choice {

 if self.value.iter().all(|x| *x == 0) {

 subtle::Choice::from(1u8)

 } else {

 subtle::Choice::from(0u8)

 }

 }

 };

}

lit-frost/src/macros.rs

all() is short-circuiting; in other words, it will stop processing as soon as it finds a

false, given that no matter what else happens, the result will also be false.

Quote from [2].

Affected Resources

• lit-frost/src/macros.rs lines 102-113, is_identity_impl! macro definition

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 10 of 29

For Public Release

Recommendation

Implement the is_identity_impl! such that all elements are evaluated before returning a

value.

References

• [1] CWE-208: Observable Timing Discrepancy

• [2] Rust Documentation: Trait std::iter::Iterator, .all() method

https://cwe.mitre.org/data/definitions/208.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.all

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 11 of 29

For Public Release

2.2 KS–LPF–F–2 Missing Zeroization

Severity Impact Likelihood Status

Low Medium Low Resolved

Description

The source code uses custom types enums which contain secret information such as the

signing share.

They are stored using Vec<u8> and not an existing type from a dependency, (such as Nonce

from frost-core).

Therefore, zeroization is not implemented.

Impact

If zeroization is not implemented, bytes containing secret information can persist in memory

longer than necessary. This will increase the threat surface and the possibility of leaking secret

information.

Evidence

pub struct SigningNonces {

 /// The ciphersuite used for the signing nonces

 pub scheme: Scheme,

 /// The hiding nonce

 pub hiding: Vec<u8>,

 /// The binding nonce

 pub binding: Vec<u8>,

}

lit-frost/src/signing_nonces.rs. The hiding and binding nonce are stored as a Vec<u8>, which does

not feature zeroization.

pub struct SigningShare {

 /// The scheme used to generate the signing share.

 pub scheme: Scheme,

 /// The value of the signing share.

 pub value: Vec<u8>,

}

lit-frost/src/signing_share.rs The value of the signing share is stored as a Vec<u8>, which does not

feature zeroization.

impl<C> Zeroize for Nonce<C>

where

 C: Ciphersuite,

{

 fn zeroize(&mut self) {

 *self = Nonce(<<C::Group as Group>::Field>::zero());

 }

}

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 12 of 29

For Public Release

An example of how frost-core implements zeroization for its Nonce type.

Affected Resources

• lit-frost/src/signing_nonces.rs

• lit-frost/src/signing_share.rs

Recommendation

Use the zeroize crate to ensure the sensitive data is zeroized on drop for any data structures

containing sensitive secrets.

References

• [1] CWE-459: Incomplete Cleanup

https://cwe.mitre.org/data/definitions/459.html

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 13 of 29

For Public Release

2.3 KS–LPF–F–3 Missing Input Validation for Bytes of Identifier

converting to u8

Severity Impact Likelihood Status

Low Low Low Resolved

Description

The implementation of the trait From<&frost_core::Identifier<C>> for Identifier converts

the party ID from frost_core::Scalar to u8. If the intended range of ID is below the size of

one byte (255), then the conversion can happen but the function is missing checks to ensure

no other information is discarded. This is instead implemented in

identifier/compatibility.rs.

Impact

When id is larger than 255 (for example in the case of random indices), the ids will be

incorrectly converted by selecting a single byte.

Evidence

impl<C: Ciphersuite> From<&frost_core::Identifier<C>> for Identifier {

 fn from(s: &frost_core::Identifier<C>) -> Self {

 match C::ID.parse().expect("Unknown ciphersuite") {

 Scheme::Ed25519Sha512 => Self {

 scheme: Scheme::Ed25519Sha512,

 id: s.serialize().as_ref()[0],

 },

 Scheme::Ed448Shake256 => Self {

 scheme: Scheme::Ed448Shake256,

 id: s.serialize().as_ref()[0],

 },

 Scheme::Ristretto25519Sha512 => Self {

 scheme: Scheme::Ristretto25519Sha512,

 id: s.serialize().as_ref()[0],

 },

 Scheme::K256Sha256 => Self {

 scheme: Scheme::K256Sha256,

 id: s.serialize().as_ref()[31],

 },

 Scheme::P256Sha256 => Self {

 scheme: Scheme::P256Sha256,

 id: s.serialize().as_ref()[31],

 },

 Scheme::P384Sha384 => Self {

 scheme: Scheme::P384Sha384,

 id: s.serialize().as_ref()[47],

 },

 Scheme::RedJubjubBlake2b512 => Self {

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 14 of 29

For Public Release

 scheme: Scheme::RedJubjubBlake2b512,

 id: s.serialize().as_ref()[0],

 },

 Scheme::K256Taproot => Self {

 scheme: Scheme::K256Taproot,

 id: s.serialize().as_ref()[31],

 },

 Scheme::Unknown => panic!("Unknown ciphersuite"),

 }

 }

}

lit-frost/src/identifier.rs .

Affected Resources

• lit-frost/src/identifier.rs line 35

Recommendation

Implement validation of the frost_core::Scalar.id by checking that all other bytes are indeed

0, i.e. the range of the ID is within 1 and 255, like it is done in identifier/compatibility.rs.

let bytes = id.to_bytes();

if bytes[1..].iter().any(|b| *b != 0) {

 return Err(Error::General("Invalid identifier".to_string()));

}

References

• [1] CWE-20 Improper Input Validation

https://cwe.mitre.org/data/definitions/20.html

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 15 of 29

For Public Release

3. OTHER OBSERVATIONS

This chapter contains additional observations that are not directly related to the security of the

code, and as such have no severity rating or remediation status summary. These observations

are either minor remarks regarding good practice or design choices or related to

implementation and performance. These items do not need to be remediated for what

concerns security, but where applicable we include recommendations.

SEVERITY TITLE STATUS

KS–LPF–O–1 Informational Source Code Can panic! in Certain

Cases

Informational

KS–LPF–O–2 Informational Dead Code Informational

KS–LPF–O–3 Informational Linting Warnings Regarding Closure in
Macro Invocations

Informational

KS–LPF–O–4 Informational Reference Specification is not yet
Finalized

Informational

KS–LPF–O–5 Informational No Security Policy Informational

KS–LPF–O–6 Informational Hard-Coded Constants Informational

KS–LPF–O–7 Informational Scalar Size Mismatch Informational

KS–LPF–O–8 Informational Casting u16 Threshold Signers into u8 Informational

KS–LPF–O–9 Informational Incorrect Error Message String Informational

KS–LPF–O–10 Informational Dependencies Use Encodings
Inconsistent with Standard

Informational

KS–LPF–O–11 Informational Taproot Requires Prehashing of
Messages

Informational

KS–LPF–O–12 Informational Multiple Signature Lengths Supported for
k256::schnorr::Signature

Informational

KS–LPF–O–13 Informational Incorrect Function Name Informational

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 16 of 29

For Public Release

3.1 KS–LPF–O–1 Source Code Can panic! in Certain Cases

Description

When using from to convert from an frost_core::Identifier to an lit_frost::Identifier,

the code can panic! if the Ciphersuite is not recognized. Depending on where the code is

meant to be used, it might be desirable to return an Error instead. This is the case further

down the file identifier.rs, line 89.

Additionally, the source code will also panic when expect() will detect an error being thrown.

Evidence

Scheme::Unknown => panic!("Unknown ciphersuite")

lit-frost/src/identifier.rs. Code explicitly panics here.

.map_err(|_| Error::General("Unknown ciphersuite".to_string()))?;

lit-frost/src/identifier.rs. Code does not panic here when encountering an unknown cyphersuite.

This is also detected by cargo-clippy.

Affected Resources

• lit-frost/src/identifier.rs line 70 (explicit panic!)

• lit-frost/src/identifier.rs lines 37, 91 (use of expect())

• lit-frost/src/key_package.rs line 34 (use of expect())

• lit-frost/src/signature_share.rs line 21 (use of expect())

• lit-frost/src/signature.rs line 23 (use of expect())

• lit-frost/src/signing_commitments.rs 24, 27, 36 lines (use of expect())

• lit-frost/src/signing_nonces.rs line 32 (use of expect())

• lit-frost/src/signing_share.rs line 23, 35 (use of expect())

• lit-frost/src/verifying_key.rs line 24(use of expect())

• lit-frost/src/verifying_share.rs line 24 (use of expect())

• lit-frost/src/signing_share/compatibility.rs lines 100, 161, 203 (use of

expect())

• lit-frost/src/verifying_key/compatibility.rs lines 525, 559, 724 (use of

expect())

Recommendation

Whether this should be an unrecoverable error depends on the intended usage. Consider

throwing an error instead of panic and letting the end user select a recognized ciphersuite.

https://github.com/rust-lang/rust-clippy

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 17 of 29

For Public Release

3.2 KS–LPF–O–2 Dead Code

Description

The source code contains several functions and code snippets that are commented out and

are not part of the module-level documentation.

Affected Resources

• lit-frost/src/lib.rs lines 714-738, function get_dkg_reshare_participant

• lit-frost/src/lib.rs lines 865-876, enum FrostDkgParameters

• lit-frost/src/lib.rs lines 920-957, enums FrostDkgRound1BroadcastData,

FrostDkgRound3BroadcastData, FrostDkgRound4BroadcastData

• lit-frost/src/lib.rs line 1103 // #[cfg(test)]

Recommendation

Remove instances of dead code/commented out functions if they are not used.

3.3 KS–LPF–O–3 Linting Warnings Regarding Closure in Macro

Invocations

Description

Using cargo-clippy returns the following warning multiple times:

warning: try not to call a closure in the expression where it is declared

See more about this specific lint here.

As a related observation, the pattern of using this macro is not found in the file lit-

frost/src/signature/compatibility.rs.

Affected Resources

Provided by cargo-clippy:

• lit-frost/src/identifier/compatibility.rs:18:1

• lit-frost/src/identifier/compatibility.rs:39:1

• lit-frost/src/identifier/compatibility.rs:60:1

• lit-frost/src/identifier/compatibility.rs:85:1

• lit-frost/src/identifier/compatibility.rs:112:1

• lit-frost/src/identifier/compatibility.rs:133:1

• lit-frost/src/identifier/compatibility.rs:159:1

• lit-frost/src/identifier/compatibility.rs:171:1

• lit-frost/src/signing_share/compatibility.rs:168:1

• lit-frost/src/verifying_key/compatibility.rs:565:1

https://github.com/rust-lang/rust-clippy
https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure_call

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 18 of 29

For Public Release

• lit-frost/src/verifying_key/compatibility.rs:578:1

Recommendation

This lint mainly influences code readability. It also appears to be a known false positive of

https://github.com/rust-lang/rust-clippy/pull/12082. Therefore, it might be good to either

resolve this warning or allow the pattern locally.

It might also be a good idea to have the same coding style across lit-

frost/src/signature/compatibility.rs and the other compatibility.rs, either by using or

not using the macro expansion.

3.4 KS–LPF–O–4 Reference Specification is not yet Finalized

Description

The reference document used for the implementation of FROST is a mature draft and not yet

an RFC. Its IRTF state is marked as Sent to the RFC Editor.

As an additional observation, some of the Ciphersuites used (RedJubJub, Taproot) are not

included in the standard.

Affected Resources

• Two-Round Threshold Schnorr Signatures with FROST, draft-irtf-cfrg-frost-15

Recommendation

Once this document is published as an RFC, review whether any impactful modifications have

been made since the publication of this draft. However, given its near-publication as RFC and

its stability since September 2023, this is unlikely to occur.

3.5 KS–LPF–O–5 No Security Policy

Description

The source code repository contains no instructions for how to report a security vulnerability,

nor any security contacts. By providing a SECURITY.md file with the contact information, the

developers can be contacted as quickly as possible, in case any vulnerabilities were to be

discovered. This is a good practice for source code that will go public.

Affected Resources

• lit-frost/src

Recommendation

Create a SECURITY.md file in the root directory with all the necessary information. See the

references below on how to proceed.

• Github - Adding a security policy

• Security Policy Generator

https://stackoverflow.com/questions/77688139/how-to-resolve-try-not-to-call-a-closure-in-the-expression-where-it-is-declared
cargo-clippy
https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/15/
https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository
https://securitytxt.org/

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 19 of 29

For Public Release

3.6 KS–LPF–O–6 Hard-Coded Constants

Description

Some constants appear to be hardcoded as integers instead of being defined in a file, in

particular when serde_impl! is used. The lack of a descriptive name also makes it difficult to

determine whether the literal is correct or not. Most of these constants are reused among

different files or in different parts of the code. This might introduce errors when modifying the

code.

Evidence

 pub(crate) fn scalar_len(&self) -> FrostResult<usize> {

 match self {

 Self::Ed25519Sha512 => Ok(32),

 Self::Ed448Shake256 => Ok(57),

 Self::Ristretto25519Sha512 => Ok(32),

 Self::K256Sha256 => Ok(32),

 Self::P256Sha256 => Ok(32),

 Self::P384Sha384 => Ok(48),

 Self::RedJubjubBlake2b512 => Ok(32),

 Self::K256Taproot => Ok(32),

 Self::Unknown => Err(Error::General("Unknown

ciphersuite".to_string())),

 }

 }

Getter function for different scalar lengths in different Ciphersuites in lit-frost/src/lib.rs

serde_impl!(SignatureShare, scalar_len, 58);

lit-frost/src/signature_share.rs

Affected Resources

• lib.rs lines 739-793, functions scalar_len(), compressed_point_len,

commitment_len(), signature_len()

• signature_share.rs , line 52, serde_impl! call

• signature.rs line 51, serde_impl! call

• signing_commitments.rs line 47, serde_impl! call

• signing_share.rs line 51, serde_impl! call

• verifying_key.rs line 49, serde_impl! call

• verifying_share.rs line 49, serde_impl! call

• signing_nonces.rs line 162 deserialize_tuple parameter

• identifier/compatibility.rs lines 7, 31, 28, 33, 49, 54, initializations of bytes and

value.len() checks

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 20 of 29

For Public Release

• signature/compatibility.rs lines 47, 79, 122, 124 , initializations of bytes and

value.len() checks

• signing_share/compatibility.rs lines 18, 42, 65, 94, 100, 124, 155, 198, 203,

initializations of bytes and value.len() checks

• verifying_key/compatibility.rs lines 22, 74, 127, 179, 237, 272, 306, 341, 376, 411,

441, 469, 520, 525, 554, initializations of bytes and value.len() checks

Recommendation

Make it clearer that the constants are meant to represent the maximum over all possible values

for each component. Define the constants with descriptive names instead of using the literal

values. Document the structure/encoding of the bytes being parsed and how they should be

interpreted.

3.7 KS–LPF–O–7 Scalar Size Mismatch

Description

The file identifier/compatibility.rs contains several macros try_from_scheme_ref!that

initialize a Scalar from a provided id of type u8. The id appears to be cast sometimes as u32

and sometimes as u64 inconsistently before being converted to frost_core::Scalar

Affected Resources

• lit-frost/src/identifier/compatibility.rs lines 20, 41, 62, 88, 114, 165

(from(id.id as u32))

• lit-frost/src/identifier/compatibility.rs line 135 (from(id.id as u64)))

3.8 KS–LPF–O–8 Casting u16 Threshold Signers into u8

Description

The frost-core dependency encodes the numbers of signers as u16, while lit-frost

encodes it as u8. When converting from frost-core::keys::KeyPackage, the threshold is

being cast as an u8 from u16. This would not be a correct conversion in the case where the

number of signers exceeds 255 (which is unlikely to occur in practice).

Affected Resources

• lit-frost/src/key_package.rs line 34

Recommendation

Throw an error if the number of threshold signers exceeds 255.

3.9 KS–LPF–O–9 Incorrect Error Message String

Description

The struct SigningNoncesVisitor implements the method expecting for the trait Visitor. The

method formats a string to describe the expected type as “a tuple of (u8, Vec<u8>)”. Instead,

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 21 of 29

For Public Release

this message should be "a tuple of (u8, Vec<u8>, Vec<u8>)", as a SigningNonce is defined

as an enum composed of one Scheme (encodable as an u8), as well as a hiding nonce (Vec<u8>)

and a binding nonce (also a Vec<u8>).

Affected Resources

• lit-frost/src/signing_nonces.rs line 120

Recommendation

Correct the error message to match the SigningNonce.

3.10 KS–LPF–O–10 Dependencies Use Encodings Inconsistent with

Standard

Description

The Two-Round Threshold Schnorr Signatures with FROST RFC Draft draft specifies little-

endian for the encoding. Some of dependencies/data types (e.g. p256::Scalar, p384::Scalar)

are, however, using big-endian encoding.

Affected Resources

• lit-frost/src/signing_share/compatibility.rs line 48, from_repr is expecting big-

endian encoding.

• lit-frost/src/signing_share/compatibility.rs line 59, to_bytes is returning big-

endian encoding.

Recommendation

Ensure the correct encoding/decoding is applied at all times. Not doing so could have

unexpected and hard to identify consequences.

3.11 KS–LPF–O–11 Taproot Requires Prehashing of Messages

Description

The functions signing_round2(), aggregate() and verify() perform the core functionalities

of FROST, toggling between Ciphersuites as needed. For 7 out of 8 supported ciphersuites,

the messages is not prehashed. For Taproot, however, the messages is prehashed with

Sha256::digest(message).as_slice().

At a minimum, this produces a sort of inconsistency at the level of implementation between

the different Ciphersuite, potentially breaking user’s expectations of how the code should

behave.

Also note that the Two-Round Threshold Schnorr Signatures with FROST RFC Draft

RECOMMENDS adding an additional context string when pre-hashing:

It is RECOMMENDED that applications which choose to apply pre-hashing

use the hash function (H) associated with the chosen ciphersuite in a

manner similar to how H4 is defined. In particular, a different prefix SHOULD

https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/15/
https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-15.html

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 22 of 29

For Public Release

be used to differentiate this pre-hash from H4. For example, if a fictional

protocol Quux decided to pre-hash its input messages, one possible way to

do so is via H(contextString || “Quux-pre-hash” || m).

Affected Resources

• lit-frost/src/lib.rs line 396, function signing_round2()

• lit-frost/src/lib.rs line 495, function aggregate()

• lit-frost/src/lib.rs line 543, function verify()

3.12 KS–LPF–O–12 Multiple Signature Lengths Supported for

k256::schnorr::Signature

Description

The try_from conversion from Signature into a k256::schnorr::Signature validates both 64

and 65 as valid signature lengths.

Affected Resources

• lit-frost/src/signature/compatibility.rs lines 111-130 try_from conversion for

k256::schnorr::Signature.

Recommendation

Use the same signature length consistently (be it either 64 or 65 as the use case requires) and

use an auxiliary function to convert between different encodings.

3.13 KS–LPF–O–13 Incorrect Function Name

Description

The function create_frost_signing_share_from_bytes should be called

create_frost_signature_share_from_bytes.

Evidence

fn create_frost_signing_shares_from_bytes<C: Ciphersuite>(

 signing_shares: &[(Identifier, SignatureShare)],

) -> FrostResult<BTreeMap<frost_core::Identifier<C>,

frost_core::round2::SignatureShare<C>>> {

 let mut signing_commitments_map = BTreeMap::new();

 for (index, share) in signing_shares {

 signing_commitments_map.insert(index.try_into()?, share.try_into()?);

 }

 Ok(signing_commitments_map)

}

Function create_frost_signing_share_from_bytes in lit-frost/src/lib.rs.

Affected Resources

• lit-frost/src/lib.rs lines 1133

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 23 of 29

For Public Release

Recommendation

Rename the function to align with the purpose and logic of the function. If the intended

outcome is indeed to create SignatureShares, then rename the function to

create_frost_signature_share_from_bytes.

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 24 of 29

For Public Release

4. METHODOLOGY

For this engagement, Kudelski Security used a methodology that is described at a high level

in this chapter. This is broken up into the following phases.

4.1 Kickoff

The Kudelski Security Team set up a kickoff meeting where project stakeholders were

gathered to discuss the project as well as the responsibilities of participants. During this

meeting, we verified the scope of the engagement and discussed the project activities.

4.2 Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular project.

This included the steps required for gaining familiarity with the codebase and technological

innovations utilized.

4.3 Review

The review phase is where most of the work on the engagement was performed. In this

phase we have analyzed the project for flaws and issues that could impact the security

posture. The review for this project was performed using manual methods and utilizing the

experience of the reviewer. No dynamic testing was performed, only the use of custom-built

scripts and tools was used to assist the reviewer during the testing. We discuss our

methodology in more detail in the following subsections.

Code Review

Kudelski Security Team reviewed the code within the project utilizing an appropriate IDE.

During every review, the team spends considerable time working with the client to determine

correct and expected functionality, business logic, and content, to ensure that findings

incorporate this business logic into each description and impact. Following this discovery

phase, the team works through the following categories:

• authentication (e.g. A07:2021, CWE-306)

• authorization and access control (e.g. A01:2021, CWE-862)

• auditing and logging (e.g. A09:2021)

• injection and tampering (e.g. A03:2021, CWE-20)

• configuration issues (e.g. A05:2021, CWE-798)

• logic flaws (e.g. A04:2021, CWE-190)

• cryptography (e.g. A02:2021)

Kickoff Ramp-up Review Report Verify

https://owasp.org/Top10/en/A07_2021-Identification_and_Authentication_Failures/
https://cwe.mitre.org/data/definitions/306.html
https://owasp.org/Top10/en/A01_2021-Broken_Access_Control/
https://cwe.mitre.org/data/definitions/862.html
https://owasp.org/Top10/en/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/en/A03_2021-Injection/
https://cwe.mitre.org/data/definitions/20.html
https://owasp.org/Top10/en/A05_2021-Security_Misconfiguration/
https://cwe.mitre.org/data/definitions/798.html
https://owasp.org/Top10/en/A04_2021-Insecure_Design/
https://cwe.mitre.org/data/definitions/190.html
https://owasp.org/Top10/en/A02_2021-Cryptographic_Failures/

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 25 of 29

For Public Release

These categories incorporate common weaknesses and vulnerabilities such as the OWASP

Top 10 and MITRE Top 25.

Cryptography

We analyze the cryptographic primitives and components as well as their implementation. We

check in particular:

• matching of the proper cryptographic primitives to the desired cryptographic

functionality needed

• security level of cryptographic primitives and their respective parameters (key lengths,

etc.)

• safety of the randomness generation in general as well as in the case of failure

• safety of key management

• assessment of proper security definitions and compliance to use cases

• checking for known vulnerabilities in the primitives used

4.4 Reporting

Kudelski Security delivered to the Client a preliminary report in PDF format that contained an

executive summary, technical details, and observations about the project.

In the report we not only point out security issues identified but also observations for

improvement. The findings are categorized into several buckets, according to their overall

severity: Critical, High, Medium, Low.

Observations are considered to be Informational. Observations can also consist of code

review, issues identified during the code review that are not security related, but are general

best practices and steps, that can be taken to lower the attack surface of the project.

The technical details are aimed more at developers, describing the issues, the severity ranking

and recommendations for mitigation.

4.5 Verify

After the preliminary findings have been delivered, we verify the fixes applied by Lit Protocol.

After these fixes were verified, we updated the status of the finding in the report.

The output of this phase is the final report with any mitigated findings noted.

https://owasp.org/Top10/en/
https://owasp.org/Top10/en/
https://cwe.mitre.org/top25/

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 26 of 29

For Public Release

5. VULNERABILITY SCORING SYSTEM

Kudelski Security utilizes a custom approach when computing the vulnerability score, based

primarily on the Impact of the vulnerability and Likelihood of an attack.

Each metric is assigned a ranking of either low, medium or high, based on the criteria defined

below. The overall severity score is then computed as described in the next section.

Severity

Severity is the overall score of the finding, weakness or vulnerability as computed from Impact

and Likelihood. Other factors, such as availability of tools and exploits, number of instances

of the vulnerability and ease of exploitation might also be taken into account when computing

the final severity score.

 IMPACT

LIKELIHOOD

LOW

MEDIUM

HIGH

HIGH Medium High High

MEDIUM Low Medium High

LOW Low Low Medium

Compute overall severity from Impact and Likelihood. The final severity factor might vary depending on a

project's specific context and risk factors.

• Critical The identified issue may be immediately exploitable, causing a strong and

major negative impact system-wide. They should be urgently remediated or mitigated.

• High The identified issue may be directly exploitable causing an immediate negative

impact on the users, data, and availability of the system for multiple users.

• Medium The identified issue is not directly exploitable but combined with other

vulnerabilities may allow for exploitation of the system or exploitation may affect

singular users. These findings may also increase in severity in the future as techniques

evolve.

• Low The identified issue is not directly exploitable but raises the attack surface of the

system. This may be through leaking information that an attacker can use to increase

the accuracy of their attacks.

• Informational findings are best practice steps that can be used to harden the

application and improve processes. Informational findings are not assigned a severity

score and are classified as Informational instead.

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 27 of 29

For Public Release

Impact

The overall effect of the vulnerability against the system or organization based on the areas

of concern or affected components discussed with the client during the scoping of the

engagement.

• High The vulnerability has a severe effect on the company and systems or has an

affect within one of the primary areas of concern noted by the client.

• Medium It is reasonable to assume that the vulnerability would have a measurable

effect on the company and systems that may cause minor financial or reputational

damage.

• Low There is little to no affect from the vulnerability being compromised. These

vulnerabilities could lead to complex attacks or create footholds used in more severe

attacks.

Likelihood

The likelihood of an attacker discovering a vulnerability, exploiting it, and obtaining a foothold

varies based on a variety of factors including compensating controls, location of the

application, availability of commonly used exploits, difficulty of exploitation and institutional

knowledge.

• High It is extremely likely that this vulnerability will be discovered and abused.

• Medium It is likely that this vulnerability will be discovered and abused by a skilled

attacker.

• Low It is unlikely that this vulnerability will be discovered or abused when discovered.

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 28 of 29

For Public Release

6. CONCLUSION

The objective of this Secure Code Review was to evaluate whether there were any vulnerabili-

ties that would put the Lit Protocol or its customers at risk.

The Kudelski Security Team identified 3 security issues: 0 critical risks, 0 medium risks and 3

lower risk. On average, the effort needed to mitigate these risks is estimated as low.

In order to mitigate the risks posed by this engagement’s findings, the Kudelski Security Team

recommends applying the following best practices:

• Zeroization of sensitive data in memory, like secrets in the protocol

• Implement proper constant-time methods to avoid side channel attacks

Kudelski Security remains at your disposal should you have any questions or need further

assistance.

Kudelski Security would like to thank Lit Protocol for their trust, help and support over the

course of this engagement and is looking forward to cooperating in the future.

Lit Protocol | Secure Code Review of FROST

21 June 2024

© 2024 Nagravision Sàrl / All Rights Reserved Page 29 of 29

For Public Release

KUDELSKI SECURITY CONTACTS

NAME POSITION CONTACT INFORMATION

Jean-Sebastien
Nahon

Application and
Blockchain Security
Practice Manager

jean-sebastien.nahon@kudelskisecurity.com

Ana Acero Project Manager/
Operations
Coordinator

ana.acero@kudelskisecurity.com

DOCUMENT HISTORY

VERSION DATE STATUS/ COMMENTS

1.0 11 June 2024 Draft Version

1.1 21 June 2024 Final Version for public release

mailto:ana.acero@kudelskisecurity.com

