

Chainlink Fluxaggregator code
review

Octopus Network
07 July 2021
Version: 1.0

Presented by:
Kudelski Security Research Team
Kudelski Security – Nagravision SA

Corporate Headquarters
Kudelski Security – Nagravision SA
Route de Genève, 22-24
1033 Cheseaux sur Lausanne
Switzerland

For Public Disclosure

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 2 of 22
For Public Disclosure

Copyright Notice
Kudelski Security, a business unit of Nagravision SA is a member of the Kudelski Group of Companies.
This document is the intellectual property of Kudelski Security and contains confidential and privileged
information. The reproduction, modification, or communication to third parties (or to other than the addressee)
of any part of this document is strictly prohibited without the prior written consent from Nagravision SA.

DOCUMENT PROPERTIES

Version: 1.0

File Name: Research_Report_Chainlink-Fluxagg-Final.docx

Publication Date: 07 July 2021

Confidentiality Level: For Public Disclosure

Document Owner: Scott Carlson

Document Recipient: Chainlink project team

Document Status: Approved

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 3 of 22
For Public Disclosure

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 5

1.1 Engagement Limitations .. 5

1.2 Engagement Analysis .. 5
1.3 Observations .. 6

1.4 Issue Summary List ... 6
2. METHODOLOGY .. 8

2.1 Kickoff .. 8

2.2 Ramp-up .. 8
2.3 Review ... 8

2.4 Reporting ... 9

2.5 Verify .. 10
2.6 Additional Note .. 10

3. TECHNICAL DETAILS .. 11
3.1 Should use constant to define size .. 11

3.2 Unresolved FIXME left in the code .. 12

3.3 Unresolved FIXME left in the code .. 13
3.4 Function could use constants as return values .. 14

3.5 Not all errors are commented .. 16
3.6 Could use constant in definition ... 17

3.7 Authorization is sufficient (Informational) ... 18

3.8 Authorization for withdraw is sufficient (Informational) .. 19

WITHDRAW ... 19

APPENDIX A: ABOUT KUDELSKI SECURITY .. 20

APPENDIX B: DOCUMENT HISTORY ... 21

APPENDIX C: SEVERITY RATING DEFINITIONS .. 22

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 4 of 22
For Public Disclosure

TABLE OF FIGURES

Figure 1 Issue Severity Distribution ... 6

Figure 2 Methodology Flow ... 8

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 5 of 22
For Public Disclosure

EXECUTIVE SUMMARY

Kudelski Security (“Kudelski”), the cybersecurity division of the Kudelski Group, was engaged
by Octopus Network and the Solana Foundation to conduct an external security assessment
in the form of a code review of the Chainlink Fluxaggregator application.

The assessment was conducted remotely by the Kudelski Security Team from our secure lab
environment. The tests took place between Mars 15, 2021 to April 30, 2021 and focused on
the following objectives:

1. To help the Client to better understand its security posture

2. To provide a professional opinion on the maturity, adequacy, and efficiency of the
security measures that are in place.

3. To identify potential issues and include improvement recommendations.

This report summarizes the tests performed and findings in terms of strengths and
weaknesses. It also contains detailed descriptions of the discovered vulnerabilities, steps the
Kudelski Security Teams took to exploit each vulnerability, and recommendations for
remediation.

1.1 Engagement Limitations
The architecture and code review are based on the documentation and code provided by
Octopus Network. The code resides in a private repository at https://github.com/octopus-
network/solana-flux-aggregator

The reviews are based on the commit hash:

solana-flux-aggregator: a224f8ba27e6c96ad6f78227278ed81a583af787

All third-party libraries were deemed out-of-scope for this review and are expected to work as
designed. We have when needed based on the criticality of the dependency looked at the
current state of the crate included.

1.2 Engagement Analysis
This engagement was comprised of a code review including reviewing how the architecture
has been implemented as well as any security issues. The architecture implementation review
was based on the documentation and the information retrieved through communication
between the Octopus Network team and the Kudelski Security team. The implementation
review concluded that the application implementation is as good as expected.

The code review was conducted by the Kudelski Security team on the code provided by
Octopus Network, in the form of a Github repository. The code review focused on the handling
of secure and private information handling in the code.

As a result of our work, we identified 0 High, 0 Medium, 1 Low, and 7 Informational findings.

The only issues found in the code were Low/Informational findings. This shows that the
functional level of the application is good and that the risk profile of the application is relatively
low.

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 6 of 22
For Public Disclosure

The findings referred to in the Findings section are such as they would improve the
functionality and performance of the application and secure it further.

Figure 1 Issue Severity Distribution

1.3 Observations
The code is generally well written and for the most part documented. This facilitates reading
of the execution flow. It is worth to mention that there are plenty of hardcoded values that
should be re-written as constants.

The engagement concluded that the code is fit for the purpose it has been designed for.

The use of the Solana SDK in the application is in accordance with the Solana development
guidelines, and based on this, we don't see any issues in the code provided for the review.

1.4 Issue Summary List

ID SEVERITY FINDING

KS-Chainlink-F-01 Low Should use constant to define size

KS-Chainlink-F-02 Informational Unresolved FIXME left in the code

KS-Chainlink-F-03 Informational Unresolved FIXME left in the code

KS-Chainlink-F-04 Informational Function could use constants as return values

KS-Chainlink-F-05 Informational Not all errors are commented

0

1

2

3

4

5

6

7

High Medium Low Informational

Issue Severity Distribution

High Medium Low Informational

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 7 of 22
For Public Disclosure

ID SEVERITY FINDING

KS-Chainlink-F-06 Informational Could use constant in definition

KS-Chainlink-F-07 Informational Authorization is sufficient

KS-Chainlink-F-08 Informational Authorization for withdraw is sufficient

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 8 of 22
For Public Disclosure

2. METHODOLOGY

Kudelski Security uses the following high-level methodology when approaching engagements.
They are broken up into the following phases.

Figure 2 Methodology Flow

2.1 Kickoff
The project is kicked all of the sales process has concluded. We typically set up a kickoff
meeting where project stakeholders are gathered to discuss the project as well as the
responsibilities of participants. During this meeting we verify the scope of the engagement and
discuss the project activities. It’s an opportunity for both sides to ask questions and get to
know each other. By the end of the kickoff there is an understanding of the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

2.2 Ramp-up
Ramp-up consists of the activities necessary to gain proficiency on the particular project. This
can include the steps needed for familiarity with the codebase or technological innovation
utilized. This may include, but is not limited to:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for specific languages

• Researching common flaws and recent technological advancements

2.3 Review
The review phase is where a majority of the work on the engagement is completed. This is the
phase where we analyze the project for flaws and issues that impact the security posture.
Depending on the project this may include an analysis of the architecture, a review of the code,
and a specification matching to match the architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review

2. Review of the code written for the project

Kickoff Ramp-up Review Report Verify

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 9 of 22
For Public Disclosure

3. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and tools, utilizing the
experience of the reviewer. No dynamic testing was performed, only the use of custom built
scripts and tools were used to assist the reviewer during the testing. We discuss our
methodology in more detail in the following sections.

Code Safety

We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues
• Poor coding practices and unsafe behavior
• Leakage of secrets or other sensitive data through memory mismanagement
• Susceptibility to misuse and system errors
• Error management and logging

This list is general list and not comprehensive, meant only to give an understanding of the
issues we are looking for.

Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the
specification. We checked for things such as:

• Proper implementation of the documented protocol phases
• Proper error handling
• Adherence to the protocol logical description

2.4 Reporting
Kudelski Security delivers a preliminary report in PDF format that contains an executive
summary, technical details, and observations about the project.

The executive summary contains an overview of the engagement including the number of
findings as well as a statement about our general risk assessment of the project as a whole.
We may conclude that the overall risk is low, but depending on what was assessed we may
conclude that more scrutiny of the project is needed.

We not only report security issues identified but also informational findings for improvement
categorized into several buckets:

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity ranking
and recommendations for mitigation.

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 10 of 22
For Public Disclosure

As we perform the audit, we may identify issues that aren’t security related, but are general
best practices and steps, that can be taken to lower the attack surface of the project. We will
call those out as we encounter them and as time permits.

As an optional step, we can agree on the creation of a public report that can be shared and
distributed with a larger audience.

2.5 Verify
After the preliminary findings have been delivered, this could be in the form of the approved
communication channel or delivery of the draft report, we will verify any fixes withing a window
of time specified in the project. After the fixes have been verified, we will change the status of
the finding in the report from open to remediated.

The output of this phase will be a final report with any mitigated findings noted.

2.6 Additional Note
It is important to note that, although we did our best in our analysis, no code audit or
assessment is a guarantee of the absence of flaws. Our effort was constrained by resource
and time limits along with the scope of the agreement.

While assessment the severity of the findings, we considered the impact, ease of exploitability,
and the probability of attack. These is a solid baseline for severity determination. Information
about the severity ratings can be found in Appendix C of this document.

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 11 of 22
For Public Disclosure

3. TECHNICAL DETAILS

This section contains the technical details of our findings as well as recommendations for
improvement.

3.1 Should use constant to define size
Finding ID: KS-Chainlink-F-01

Severity Low

Status: Open

Description

When defining the structs AddRequesterContext and AddOracleContext int processor.rs and
Instruction.AddOracle and Instruction.AddRequester size is defined with separate integers.

Filename: instruction.rs

Beginning Line number: 20

pub enum Instruction {

 Initialize {

 config: AggregatorConfig,

 },

 Configure {

 config: AggregatorConfig,

 },

 AddOracle {

 description: [u8; 32],

 },

 RemoveOracle,

 AddRequester {

 description: [u8; 32],

 },

 RemoveRequester,

 RequestRound,

 Submit {

 round_id: u64,

 value: u64,

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 12 of 22
For Public Disclosure

 },

 Withdraw {

 faucet_owner_seed: Vec<u8>,

 },

}

Filename: processor.rs

Beginning line number: 103, 156

struct AddOracleContext<'a> {

 rent: Rent,

 aggregator: &'a AccountInfo<'a>,

 aggregator_owner: &'a AccountInfo<'a>, // signed

 oracle: &'a AccountInfo<'a>,

 oracle_owner: &'a AccountInfo<'a>,

 description: [u8; 32],

}

struct AddRequesterContext<'a> {

 rent: Rent,

 aggregator: &'a AccountInfo<'a>,

 aggregator_owner: &'a AccountInfo<'a>, // signed

 requester: &'a AccountInfo<'a>,

 requester_owner: &'a AccountInfo<'a>,

 description: [u8; 32],

}

Severity and Impact summary

By not using a constant for defining the size of description there is a possibility for one of the
value either being unintentionally altered or one of the values forgotten to be altered. This
would probably result in an undesirable application state.

Recommendation

Alter the code to use a constant when defining the size of the description arrays in
OracleContext and RequstContext

3.2 Unresolved FIXME left in the code
Finding ID: KS-Chainlink-F-02

Severity: Informational

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 13 of 22
For Public Disclosure

Status: Open

Description

There is a block of comment stating that something needs to be fixed, but the code works as
intended.

Filename: borsh_state.rs

Beginning line number: 14

fn save(&self, account: &AccountInfo) -> ProgramResult {

 let data = self

 .try_to_vec()

 .map_err(|_| ProgramError::InvalidAccountData)?;

 // FIXME: looks like there is association precedence issue that prevents

 // RefMut from being automatically dereferenced.

 //

 // let dst = &mut account.data.borrow_mut();

 //

 // Why does it work in an SPL token program though?

 //

 // Account::pack(source_account, &mut source_account_info.data.borrow_mut())?;

 let mut dst = (*account.data).borrow_mut();

 if dst.len() != data.len() {

 return Err(ProgramError::InvalidAccountData);

 }

 dst.copy_from_slice(&data);

 Ok(())

 }

Severity and Impact Summary

If the unresolved FIXME is only documented in code there is a risk that it is forgotten and left
unresolved. The code works as intended but the FIXME confuses the reader.

Recommendation

Make sure that the FIXME is documented in the project management tool instead of in the
code.

3.3 Unresolved FIXME left in the code
Finding ID: KS-Chainlink-F-03

Severity: Informational

Status: Open

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 14 of 22
For Public Disclosure

Description

There is a block of comment stating that something needs to be fixed, but the code works as
intended.

Filename: borsh_state.rs

Beginning line number: 36

fn save_exempt(&self, account: &AccountInfo, rent: &Rent) -> ProgramResult {

 let data = self

 .try_to_vec()

 .map_err(|_| ProgramError::InvalidAccountData)?;

 if !rent.is_exempt(account.lamports(), data.len()) {

 // FIXME: return a custom error

 return Err(ProgramError::InvalidAccountData);

 }

 let mut dst = (*account.data).borrow_mut();

 if dst.len() != data.len() {

 // FIXME: return a custom error

 return Err(ProgramError::InvalidAccountData);

 }

 dst.copy_from_slice(&data);

 Ok(())

 }

Severity and Impact Summary

If the unresolved FIXME is only documented in code there is a risk that it is forgotten and left
unresolved. The code works as intended but the FIXME confuses the reader.

Recommendation

Make sure that the FIXME is documented in the project management tool instead of in the
code.

3.4 Function could use constants as return values
Finding ID: KS-Chainlink-F-04

Severity: Informational

Status: Open

Description

Function does not use constants as return values.

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 15 of 22
For Public Disclosure

Filename: borsh_utils.rs

Beginning line number: 6

/// Get packed length for the given BorchSchema Declaration

fn get_declaration_packed_len(

 declaration: &str,

 definitions: &HashMap<Declaration, Definition>,

) -> usize {

 match definitions.get(declaration) {

 Some(Definition::Array { length, elements }) => {

 *length as usize * get_declaration_packed_len(elements, definitions)

 }

 Some(Definition::Enum { variants }) => {

 1 + variants

 .iter()

 .map(|(_, declaration)| get_declaration_packed_len(declaration, definitions))

 .max()

 .unwrap_or(0)

 }

 Some(Definition::Struct { fields }) => match fields {

 Fields::NamedFields(named_fields) => named_fields

 .iter()

 .map(|(_, declaration)| get_declaration_packed_len(declaration, definitions))

 .sum(),

 Fields::UnnamedFields(declarations) => declarations

 .iter()

 .map(|declaration| get_declaration_packed_len(declaration, definitions))

 .sum(),

 Fields::Empty => 0,

 },

 Some(Definition::Sequence {

 elements: _elements,

 }) => panic!("Missing support for Definition::Sequence"),

 Some(Definition::Tuple { elements }) => elements

 .iter()

 .map(|element| get_declaration_packed_len(element, definitions))

 .sum(),

 None => match declaration {

 "u8" | "i8" => 1,

 "u16" | "i16" => 2,

 "u32" | "i32" => 4,

 "u64" | "i64" => 8,

 "u128" | "i128" => 16,

 "bool" => 1,

 "nil" => 0,

 _ => panic!("Missing primitive type: {}", declaration),

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 16 of 22
For Public Disclosure

 },

 }

}

Severity and Impact Summary

By not using constants there is a higher risk that the returned value is unintentionally altered
resulting in an erroneous being return resulting in an unexpected application state.

Recommendation

Define constants for the return values to prevent erroneous values being returned.

3.5 Not all errors are commented
Finding ID: KS-Chainlink-F-05

Severity: Informational

Status: Open

Description

Not all errors are commented with an integer

Filename: error.rs

Beginning line number: 43

 #[error("No resolve answer")]

 NoResolvedAnswer,

 #[error("No submitted value")]

 NoSubmission,

 #[error("Invalid faucet")]

 InvalidFaucet,

 #[error("Unknown error")]

 UnknownError,

Severity and Impact Summary

By not commenting all the errors the application may harder to debug due to the fact it may
be harder to identify which error is being thrown.

Recommendation

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 17 of 22
For Public Disclosure

Add comments to the remaining four errors.

3.6 Could use constant in definition
Finding ID: KS-Chainlink-F-06

Severity: Informational

Status: Open

Description

Lamports are defined with integers directly.

Filename: processor.rs

Beginning line number: 601

 fn rent_sysvar() -> TSysAccount {
 TSysAccount(sysvar::rent::id(), create_account(&Rent::default(), 42))

 }

 fn sysclock(time: i64) -> TSysAccount {

 let mut clock = Clock::default();

 clock.slot = time as u64;

 TSysAccount(sysvar::clock::id(), create_account(&clock, 42))

 }

Severity and Impact Summary

By not using a constant the test may be unintentionally altered to use incorrect values resulting
in incorrect test results.

Recommendation

Change the code to use constant to make sure the same number of lamports always are used

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 18 of 22
For Public Disclosure

3.7 Authorization is sufficient (Informational)
The general authorization mechanism used in Re Chainlink Flux is:

1. Given an account to do something with

2. The accounts's owner/authority must have signed the transaction.

This authorization mechanism is used for processing the following instructions.

Instructions authorized by aggregator accounts:

• Initialize -- register aggregator owner

• Configure -- register aggregator SPL token account used in withdraw

• Add oracle -- register oracle owner

• Remove oracle

• Add requester -- register requester owner

• Remove requester

Instructions authorized by oracle accounts:

• Submit

• Withdraw

Instructions authorized by requester accounts:

• Request round

Furthermore, the references from the account "to do something with" are checked against the
accounts provided as input.

For withdraw the signing seed for the SPL token account to transfer tokens from is required.
Thus, the program has no signing authority to withdraw that can be abused.

Thus, the authorization mechanism looks sound.

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 19 of 22
For Public Disclosure

3.8 Authorization for withdraw is sufficient (Informational)

WITHDRAW

The authorization for the withdraw instruction requires the owner of the oracle to sign the
transaction. Furthermore, the signer seed for the delegate authority of the facet (source) account
must also be precent.

As the delegate authority's signer seeds are required it is not possible to do unauthorized
withdraws.

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 20 of 22
For Public Disclosure

APPENDIX A: ABOUT KUDELSKI SECURITY

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and media
security solutions to enterprises and public sector institutions. Our team of security experts
delivers end-to-end consulting, technology, managed services, and threat intelligence to help
organizations build and run successful security programs. Our global reach and cyber
solutions focus is reinforced by key international partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit
https://www.kudelskisecurity.com.

Kudelski Security

route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

Kudelski Security

5090 North 40th Street

Suite 450

Phoenix, Arizona 85018

This report and its content is copyright (c) Nagravision SA, all rights reserved.

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 21 of 22
For Public Disclosure

APPENDIX B: DOCUMENT HISTORY

VERSION STATUS DATE AUTHOR COMMENTS

0.1 Draft 3 May 2021 Fredrik Strander Draft to QA

0.3 Final Draft 11 June 2021 Scott Carlson

1.0 Final For Public
Release

7 July 2021 Scott Carlson Final

REVIEWER POSITION DATE VERSION COMMENTS

Mikael Björn Tech Lead 4 May 2021 0.1 Draft

 Select the Date

 Select the Date

APPROVER POSITION DATE VERSION COMMENTS

 Select the Date

 Select the Date

 Select the Date

Octopus Network | Chainlink Fluxaggregator code review
07 July 2021

© 2021 Nagravision SA / All Rights Reserved Page 22 of 22
For Public Disclosure

APPENDIX C: SEVERITY RATING DEFINITIONS

Kudelski Security uses a custom approach when determining criticality of identified issues.
This is meant to be simple and fast, providing customers with a quick at a glance view of the
risk an issue poses to the system. As with anything risk related, these findings are situational.
We consider multiple factors when assigning a severity level to an identified vulnerability. A
few of these include:

• Impact of exploitation

• Ease of exploitation

• Likelihood of attack

• Exposure of attack surface

• Number of instances of identified vulnerability

• Availability of tools and exploits

SEVERITY DEFINITION

High The identified issue may be directly exploitable causing an immediate
negative impact on the users, data, and availability of the system for
multiple users.

Medium The identified issue is not directly exploitable but combined with other
vulnerabilities may allow for exploitation of the system or exploitation
may affect singular users. These findings may also increase in severity
in the future as techniques evolve.

Low The identified issue is not directly exploitable but raises the attack
surface of the system. This may be through leaking information that an
attacker can use to increase the accuracy of their attacks.

Informational Informational findings are best practice steps that can be used to harden
the application and improve processes.

