Secure Code Review of
avalabs-mpc

Ava Labs CGGMP21 Implementation
Ava Labs

March 15, 2024
Version: 1.2

Corporate Headquarters

Kudelski Security — Nagravision Sarl
Route de Geneve, 22-24

1033 Cheseaux-sur-Lausanne
Switzerland

For Public Release

KUDELSKI
SECURITY

o

Ava Labs | Secure Code Review of avalabs-mpc n
March 15, 2024

DOCUMENT PROPERTIES
AvaLabs-CGGMP21_Code Review PUBLIC.pdf
March 15, 2024

For Public Release

Luca Dolfi, Adina Nedelcu

Copyright Notice

Kudelski Security, a business unit of Nagravision Sarl is a member of the Kudelski Group of Com-
panies. This document is the intellectual property of Kudelski Security and contains confidential
and privileged information. The reproductions, modification, or communication to third parties (or to
other than the addressee) of any part of this document is strictly prohibited without the prior written
consent from Nagravision Sarl.

© 2024 Nagravision Sarl / All Rights Reserved. Page 1 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc
March 15, 2024

TABLE OF CONTENTS
DOCUMENT PROPERTIES 1
TABLE OF CONTENTS 2
1 EXECUTIVE SUMMARY 3
1.1 Key Findings e 3
2 PROJECT SUMMARY 4
2.1 SCOPE . . . 4
2.2 Remarks e 4
2.3 AdditionalNote 5
3 FINDINGS 6
3.1 KS-AL-1 Samplelnterval does not Work Correctly for Certain Arguments 7
3.2 KS-AL-2 Missing SSID in Fiat Shamir Proof 10
3.3 KS-AL-3 Paillier Security Parameter too Small for 128 Bits Security 12
3.4 KS-AL—4 Missing Edge CasesChecks 14
4 METHODOLOGY 16
4.1 Kickoff e e 16
4.2 Ramp-UP o e 16
4.3 Review e e 16
43.1 CodeReview e 17
4.3.2 Cryptography 17
4.3.3 Technical Specification Matching 17
4.4 Reporting o e e 18
5 VULNERABILITY SCORING SYSTEM 19
5.1 Severity 19
5.2 Impact e 20
5.3 Likelihood 20
6 CONCLUSION 21
RECIPIENT CONTACTS 22
KUDELSKI SECURITY CONTACTS 23
DOCUMENT HISTORY 24
© 2024 Nagravision Sarl / All Rights Reserved. Page 2 of 24

For Public Release

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

1. EXECUTIVE SUMMARY

Ava Labs engaged Kudelski Security to perform a secure code assessment of a cryptographic
library implementing the threshold signature scheme CGGMP21 ' in Go. The code implements
a threshold signature scheme for ECDSA over the curve secp256k1 with support for offline
presigning. The library was commissioned by Ava Labs and implemented by Trail of Bits which
worked closely with Kudelski Security Team during the engagement to provide documentation
and support during the code audit.

The assessment was conducted remotely by the Kudelski Security Team. Testing took place
between the 27th of November 2023 and 24th of January 2024, and focused on the following
objectives:

¢ To provide the customer with an assessment of their overall security posture and any risks
that were discovered with the cryptographic library.

¢ To provide a professional opinion on the maturity, adequacy, and efficiency of the security
measures that are in place.

¢ To identify potential issues and include improvement recommendations based on the re-
sult of our tests.

1.1. Key Findings

The following are the major themes and issues identified during the testing period. These, along
with other items, within the findings section, should be prioritized for remediation to reduce to
the risk they pose.

¢ Missing domain separation in hashed message for key generation

Critical | 0
High |0
Medium |0
Low 2
Informational 2
0 | 2 3

Figure 1.1. Findings ranked by severity.

'Canetti, R., et al (2020). UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable Aborts. Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security. Available at: https://eprint.iacr.
org/2021/060

© 2024 Nagravision Sarl / All Rights Reserved. Page 3 of 24
For Public Release

https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2021/060

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

2. PROJECT SUMMARY

This report summarizes the engagement, tests performed, and findings. It also contains de-
tailed descriptions of the discovered vulnerabilities, steps the Kudelski Security Team took
to identify and validate each issue, as well as any applicable recommendations for remedia-
tion.

2.1. Scope

The repository avalabs-mpc contains the implementation of the CGGMP21 threshold sig-
nature scheme. The library is meant to allow peers to join in a distributed protocol to sign
messages, while no single user is able to control the signature individually. The code supports
implementation over the curve secp256k1 (i.e. Bitcoin curve) for key generation, key refresh
and reshare and offline presigning.

The intent of this engagement is to perform a secure code review of the following:
e avalabs-mpc/crypto
e avalabs—mpc/cggmp
e avalabs-mpc/network
e avalabs—mpc/example
Present at the commit hash 40f2c79c404e7a8d304f10442e287a02c4d701e8

In addition, Ava Labs provided Kudelski Security Team with the detailed CGGMP21 Specifi-
cation prepared by Trail of Bits on 14/07/2023 as assisting documentation to the implementa-
tion.

Follow-up

After the initial report, Ava Labs addressed the vulnerabilities and weaknesses in the following
codebase revision:

e commit hash: f6a8ae3e2a9d236d£8e95d1c69708203a63e7a35

A re-review was performed on February 23rd, 2024 and the status of the findings (Open, Ac-
knowledged or Resolved) was updated in this report.

2.2. Remarks

During the code review, the following positive observations were noted regarding the scope of
the engagement:

e The developers have made a careful and in-depth analysis and documentation of their
project.

¢ In their design decision, Trail of Bits were considerate on specific edge cases and how to
handle them with a practical approach going from theory to production.

© 2024 Nagravision Sarl / All Rights Reserved. Page 4 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

o Tests were also provided as part of the project, which is convenient for better understand-
ing how the library works and useful for elaborating scenarios and validating findings.

o Finally, we had regular and very enriching technical exchanges on various topics.

2.3. Additional Note

It is important to notice that, although we did our best in our analysis, no code audit assessment
is per se guarantee of absence of vulnerabilities. Our effort was constrained by resource and
time limits, along with the scope of the agreement.

In assessing the severity of some of the findings we identified, we kept in mind both the ease
of exploitability and the potential damage caused by an exploit.

While assessing the severity of the findings, we considered the impact, ease of exploitability,
and the probability of attack. This is a solid baseline for severity determination. Information
about the severity ratings can be found in Section 5 of this document.

Deviations from CGGMP21 paper

The security of a cryptographic primitive relies heavily on the chosen security model. Compos-
ing cryptographic primitives, each individually proven secure within different security models,
may introduce vulnerabilities in the composition, even if the individual primitives remain secure.
As acknowledged by Trail of Bits in Section 2.5, the KeyGen protocol from the CGGMP21 pa-
per has been substituted with the protocol introduced by Aumasson et al.” from Taurus Group.
There exist additional slight deviations from the CGGMP paper, such as not implementing ver-
ifiable aborts and implementing key reshare.

As these are not fully captured by the security proof/model, it is advisable to perform a for-
mal cryptographic analysis of the new protocol. However, it is important to note that such an
analysis goes beyond the current engagement’s scope.

' Adaptations from CGGMP21. J.P. Aumasson, A. Hamelink, L. Meier, https:/github.com/taurusgroup/multi-party-
sig/blob/main/docs/Threshold.pdf

© 2024 Nagravision Sarl / All Rights Reserved. Page 5 of 24
For Public Release

https://github.com/taurusgroup/multi-party-sig/blob/main/docs/Threshold.pdf
https://github.com/taurusgroup/multi-party-sig/blob/main/docs/Threshold.pdf

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

3. FINDINGS

The Findings section provides detailed information on each of the findings, including methods
of discovery, explanation of severity determination, recommendations, and applicable refer-
ences.

The following table provides an overview of the findings.

n SEVERITY TITLE STATUS

KS-AL-1 Low Samplelnterval does not Work Correctly
for Certain Arguments
KS-AL-2 Low Missing SSID in Fiat Shamir Proof
KS-AL-3 Informational Paillier Security Parameter too Small for Informational
128 Bits Security
KS-AL-4 Informational =~ Missing Edge Cases Checks Informational
© 2024 Nagravision Sarl / All Rights Reserved. Page 6 of 24

For Public Release

Ava Labs | Secure Code Review of avalabs-mpc KUDEI.SKI A
March 15, 2024 SECURITY

3.1. KS-AL-1 Samplelnterval does not Work Correctly for Certain
Arguments

Overall Severity: LOW

Status: Resolved

Impact Likelihood

LOW

Description

The file interval.go contains the function SampleInterval. that should return “random
value in the range +/ — 2¥**”. During testing, the Kudelski Security Team has discovered that
this function does not work as intented for certain values of the bits argument. In particu-
lar:

o If bits < 8, thenthe buf [0 : size-1] isthe empty array and thus the sampled num-
ber is zero.

e It bits is not a multiple of 8, then up to 7 bits are discarded and the sampled number will
belong to a smaller interval than intended.
Impact

This function is never used with arguments that will cause the incorrect behaviour. However,
this could occur in the future; for example, if a developer intends to use the crypto as a basis
for another project.

Evidence

10 // SamplelInterval returns a random value in the range +/- 2"bits
11 func SamplelInterval (bits uint) #*saferith.Int ({

12 size := bits/8 + 1
13 buf := make([]lbyte, size)
14 _, err := rand.Read(bufl:])
15 if err !'= nil {
16 panic (err)
17 }
18
19 nat := new(saferith.Nat) .SetBytes (buf[0 : size-1])
20
21 return new(saferith.Int) .SetNat (nat) .Neg(saferith.Choice (buf[size
-11) & 1)
22l |
..interval.go
© 2024 Nagravision Sarl / All Rights Reserved. Page 7 of 24

For Public Release

Ava Labs | Secure Code Review of avalabs-mpc n
March 15, 2024

Proof of Concept

1 package main

21
22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43

44

45

46

import (

)

"crypto/rand"
A fmt "
"github.com/cronokirby/saferith"

func SamplelInterval2(bits uint) xsaferith.Int {

size := bits/8 + 1
fmt .Println ("Queried_Size: ", size)
buf := make([]lbyte, size)

_, err := rand.Read(bufl[:])

if err != nil {
panic (err)
}
fmt .Println ("Sampled_Buf: ", buf)

nat := new(saferith.Nat) .SetBytes (buf[0 : size-1])

fmt.Println ("Bytes_of_nat: ", buf[0 : size-1])

— !

fmt .Println("Sign,:_",saferith.Choice (buf[size-1]) & 1)

ret := new(saferith.Int) .SetNat (nat) .Neg(saferith.Choice (buf[size
-1]) & 1)
return ret

func SampleInterval3(bits uint) xsaferith.Int {

size := bits/8 + 1
fmt .Println ("Queried_Size: ", size)
buf := make([]lbyte, size)

_, err := rand.Read(bufl[:])

if err != nil {
panic (err)
}
fmt .Println ("Sampled_Buf: ", buf)

nat := new(saferith.Nat) .SetBytes (buf[0 : size-1])

fmt.Println ("Bytes_of_nat: ", buf[0 : size-1])

[4

fmt .Println("Sign,:_,",saferith.Choice (buf[size-1]) & 1)

ret := new(saferith.Int) .SetNat (nat) .Neg(saferith.Choice (buf[size
-1]) & 1)
return ret

© 2024 Nagravision Sarl / All Rights Reserved. Page 8 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc =L A
March 15, 2024 ‘

47

48

49 func main () {
50 fmt .Println ("PoC_for_bits_<.,8.")
51 fmt .Println ("Executing_SampleInterval2(1l).")

52 SampleInterval2 (1)

53 fmt .Println ("PoC_for_bits = not _multiple_of 8.")
54 fmt.Println ("Executing_SampleInterval3 (15).")

55 SampleInterval3 (15)

56 fmt.Println ("End_of program.")

57}

Code to test the function TestInterval and print out relevant values.

sh-3.2$%$ go run
PoC for bits < 8.
Executing SampleInterval2 (1).

Queried Size: 1
Sampled Buf: [5]
Bytes of nat: []
Sign : 1

PoC for bits = not multiple of 8.
Executing SampleInterval3 (1l5).

Queried Size: 2
Sampled Buf: [16 208]
Bytes of nat: [16]
Sign : O

End of program.

Console output. With argument 1...7, nat will be an empty buffer. With a non-multiple of 8
argument, the last byte of buf will not be included into nat.

Affected Resources

e crypto/random/interval.go line 10-22

Recommendation
Correct the behaviour of the function for the edge cases outlined. Alternatively, perform input
validation and only accept non-zero multiples of 8 as arguments.
References
[1] CWE-20: Improper Input Validation

© 2024 Nagravision Sarl / All Rights Reserved. Page 9 of 24
For Public Release

https://cwe.mitre.org/data/definitions/20.html

Ava Labs | Secure Code Review of avalabs-mpc KUDEI.SKI A
March 15, 2024 SECURITY

3.2. KS-AL-2 Missing SSID in Fiat Shamir Proof

Overall Severity: LOW
Status: Resolved
Impact Likelihood
Description

According to the technical specification [1] provided, aux should be “a byte string containing
binding data, such as party and session ID”. Furthermore, according to Section 8.6, Step 9a in
AFF_PROVE, this should be included when computing the challenge (as part of the Fiat-Shamir
transformation.)

Impact

The session identifier and the other parameters included in aux should be included in the
challenge computation to prevent replays across different sessions.

Evidence

100 fiatshamir := fsAffg{

101 Prm: prm,

102 NO: k.PublicKey () .N() .Nat (),
103 N1: f.PublicKey () .N() .Nat (),
104 C: k.Nat (),

105 D: d.Nat (),

106 Y g f.Nat (),

107 BigX: bigX,

108 SE S,

109 T: T,

110 A: A,

111 Bx: bx,

112 By: by,

113 E: 13,

114 B g

115 }

116

17 // compute challenge

118 e, err := challenge(fiatshamir)

...aff.go The function challenge is called with only one parameter.

283 func challenge (fs fsAffg, aux ...any) (xsaferith.Int, error) {

284 return util.NewChallenge (common.L, "PI_AFF-G", aux, fs.Prm, fs.
NO, fs.N1, fs.C, fs.D, fs.Y, fs.BigX, fs.S, fs.T, fs.A, fs.Bx,
fs.By, fs.E, fs.F)

© 2024 Nagravision Sarl / All Rights Reserved. Page 10 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc KUDEI.SKI A
March 15, 2024 SECURITY

285 }

.. .aff.go. Definifion of the challenge function.

Affected Resources

e crypto/zkproof/paillier/aff.go lines 100-118

Recommendation

Call the challenge function with the aux parameter included.

References
[1] Trail of Bits (14/07/2023). CGGMP21 Specification.

© 2024 Nagravision Sarl / All Rights Reserved. Page 11 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

3.3. KS-AL-3 Paillier Security Parameter too Small for 128 Bits Se-
curity

Overall Severity: INFORMATIONAL

Description

Although the CGGMP21 [1] paper says that the size of the Paillier modulus should be at least
2048 bits when working on a 256-bit elliptic curve, following NIST recommendations [2] to
match the desired security level of 128 bits the Paillier modulus should have a size of 3072
bits.

Remark
After discussion with Ava Labs and Trail of Bits, we include their answer on the finding:

Bit-equivalent security for RSA moduli is fundamentally heuristic. While we be-
lieve that 2048-bit moduli are sufficient for all practical purposes, we have added
documentation describing how users can increase this parameter if desired.

Impact

The current security level of Paillier corresponds to 112 bits, which is lower than the security
level of secp256k1 (128 bits). The use of 2048 bits is a common choice if a security level of
112 bits is considered sufficient or if switching to bigger size is not possible for performance
reasons.

Evidence

7 // SecParam is the bit-length kappa of an EC curve element. Because
this

s // library implements only secp256kl, this is obviously 256.

9 SecParam = 256

10 SecBytes = SecParam / 8

12 // According to the CGGMP paper, 1, 1’, eps are set to 1, 5, 2
factor of the

13 // EC element bit-length SecParam.

14 L = 1 x SecParam

15 LPrime = 5 * SecParam

16 Epsilon 2 % SecParam

17)

19 var PaillierBits = 8 x SecParam

. ..params.go.

Affected Resources

e cggmp/common/params.go line 19

© 2024 Nagravision Sarl / All Rights Reserved. Page 12 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc n
March 15, 2024

Recommendation

To achieve the NIST recommended level of 128 bits of security, the value of the PaillierBits
global variable should be increased to at least 3072.

References

[1] Canetti, R., et al (2020). UC Non-Interactive, Proactive, Threshold ECDSA with Iden-
tifiable Aborts. Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. Available at: https://eprint.iacr.org/2021/060, page 5

[2] (NIST, 2020) NIST Special Publication 800-57 Part 1 Revision 5, Recommendation for
Key Management: Part 1 — General, page 54-55 Available at: https:/nvipubs.nist.gov

© 2024 Nagravision Sarl / All Rights Reserved. Page 13 of 24
For Public Release

https://eprint.iacr.org/2021/060
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

3.4. KS-AL—4 Missing Edge Cases Checks

Overall Severity: INFORMATIONAL

Description

Either the paper [1] or the technical specification mention some edge cases that should be
checked for, such as:

e sampled scalar should not be zero;

e primes p and ¢ should be distinct from each other;

e elements used in Paillier should be invertible.
These are extremely unlikely to happen given the size of the security parameters implemented,
however it is good practice to include these sanity checks to avoid undefined behaviours.
Remark

After discussion with Ava Labs and Trail of Bits, it was made clear that these checks were
intentionally omitted due to the negligible probability of the adverse events occurring:

The probability of any of these events occurring is less than the probability that an
attacker successfully guesses the user’s private key at random. We determined that
inclusion of these checks would create unnecessary side-channel attack surface in
order to prevent a cryptographically-negligible occurrence.

Impact

Mathematical operations with edge cases might not work as intended, leading to undefined
behaviour.

Evidence

Invertibility Check

Several places in [2], such as 8.2, Step 1b in PRM_GEN, describe a check for invertibility, check-
ing that ged(r, N) = 1. While these are laid out in the specification, they are not performed in
the codebase.

Primes should be distinct

74 func GenerateKey (size int) SecretKey {

75 if size&l !'= 0 {

76 panic ("internal error: requested Paillier key size is_not _even"
)

77 }

78

79 concurrency := runtime.NumCPU ()

80 // Buffered so that workers don’t block on output

81 outChan := make(chan xsaferith.Nat, concurrency)

82 cancelChan := make (chan struct{})

© 2024 Nagravision Sarl / All Rights Reserved. Page 14 of 24

For Public Release

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

83 for 1 := 0; 1 < concurrency; i++ {

84 go func () {

85 // Initialize a new thread-local fast RNG for each worker

86 seed := random.Bytes32 ()

87 reader, err := blake2b.NewXOF (blake2b.OutputlLengthUnknown,
seed[:])

88 if err !'= nil {

89 panic ("internal error:_failed_initializing_fast, RNG")

90 }

91 outChan <- random.SafePrime (size/2, reader, cancelChan)

92 O

93 }

94 p := <-outChan

95 g := <-outChan

9% if p == nil || g == nil {

97 panic ("internal error:_failed_generating _safe_primes")

98 }

99 close (cancelChan) // Cancel remaining workers

100 return SecretKeyFromFactors(p, g, size)

101}

...secret.go There is no check to determine whether the sampled primes are distinct frome
each other.

Affected Resources
e crypto/paillier/secret.go line 74-101

e crypto/paillier/public.go line 45-62

Recommendation

Though these sanity checks are highly improbable and cryptographically negligible, omitting
them from the code technically constitutes a (negligible) deviation from the specifications out-
lined in the paper. Following discussions with Ava Labs and the developers, the Kudelski Se-
curity Team also recognized that certain potential remediation measures, particularly those
involving GCD checks, could inadvertently introduce a new and potentially more susceptible
vulnerability to side-channel attacks.

References

[1] Canetti, R., et al (2020). UC Non-Interactive, Proactive, Threshold ECDSA with Iden-
tifiable Aborts. Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. Available at: https://eprint.iacr.org/2021/060

[2] Trail of Bits (14/07/2023). CGGMP21 Specification.

© 2024 Nagravision Sarl / All Rights Reserved. Page 15 of 24
For Public Release

https://eprint.iacr.org/2021/060

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

4. METHODOLOGY

For this engagement, Kudelski used a methodology that is described at high-level in this sec-
tion. This is broken up into the following phases.

4.1. Kickoff

The project was kicked off when all of the sales activities had been concluded. We set up a
kickoff meeting where project stakeholders were gathered to discuss the project as well as the
responsibilities of participants. During this meeting we verified the scope of the engagement
and discussed the project activities. It was an opportunity for both sides to ask questions
and get to know each other. By the end of the kickoff there was an understanding of the
following:

¢ Designated points of contact
e Communication methods and frequency

Shared documentation

Code and/or any other artifacts necessary for project success

Follow-up meeting schedule, such as a technical walkthrough

Understanding of timeline and duration

4.2. Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular project.
This included the steps needed for gaining familiarity with the codebase and technological
innovations utilized, such as:

¢ Reviewing previous work in the area including academic papers
¢ Reviewing programming language constructs for the languages used in the code

e Researching common flaws and recent technological advancements

4.3. Review

The review phase is where a majority of the work on the engagement was performed. In this
phase we analyzed the project for flaws and issues that could impact the security posture. This
included an analysis of the architecture, a review of the code, and a specification matching to
match the architecture to the implemented code.

In this code audit, we performed the following tasks:

© 2024 Nagravision Sarl / All Rights Reserved. Page 16 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

1. Security analysis and architecture review of the original protocol;

2. Review of the code written for the project;

3. Assessment of the cryptographic primitives used;

4. Compliance of the code with the provided technical documentation.

The review for this project was performed using manual methods and utilizing the experience
of the reviewer. No dynamic testing was performed, only the use of custom-built scripts and
tools were used to assist the reviewer during the testing. We discuss our methodology in more
detail in the following subsections.

4.3.1. Code Review
We analyzed the provided code, checking for issues related to the following categories:
1. general code safety and susceptibility to known issues;
2. poor coding practices and unsafe behavior;
3. leakage of secrets or other sensitive data through memory mismanagement;
4. susceptibility to misuse and system errors;
5. error management and logging.
This is a general and not comprehensive list, meant only to give an understanding of the issues
we have been looking for.
4.3.2. Cryptography

We analyzed the cryptographic primitives and components as well as their implementation. We
checked in particular:

1. matching of the proper cryptographic primitives to the desired cryptographic functionality
needed;

2. security level of cryptographic primitives and their respective parameters (key lengths,
etc.);

3. safety of the randomness generation in general as well as in the case of failure;
4. safety of key management;

5. assessment of proper security definitions and compliance to use cases;

6

. checking for known vulnerabilities in the primitives used.

4.3.3. Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the specification.
We checked for things such as:

1. proper implementation of the documented protocol phases.
2. proper error handling.

3. adherence to the protocol logical description.

© 2024 Nagravision Sarl / All Rights Reserved. Page 17 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

4.4. Reporting

Kudelski delivered to Ava Labs a preliminary report in PDF format that contained an execu-
tive summary, technical details, and observations about the project, which is also the general
structure of the current final report.

The executive summary contains an overview of the engagement, including the number of find-
ings as well as a statement about our general risk assessment of the project as a whole.

In the report we not only point out security issues identified but also informational findings for
improvement categorized into several buckets:

1. Critical;

2. High;

3. X

4. Low;

5. Informational.

The technical details are aimed more at developers, describing the issues, the severity ranking
and recommendations for mitigation.

As we performed the audit, we also identified issues that are not security related, but are gen-
eral best practices and steps, that can be taken to lower the attack surface of the project.

As an optional step, we can agree on the creation of a public report that can be shared and
distributed with a larger audience.

© 2024 Nagravision Sarl / All Rights Reserved. Page 18 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc n
March 15, 2024

5. VULNERABILITY SCORING SYSTEM

Kudelski Security utilizes a custom approach when computing the vulnerability score, based
primarily on the Impact of the vulnerability and Likelihood of an attack.

Each metric is assigned a ranking of either low, medium or high, based on the criteria defined
in in Section 5.2 and Section 5.3. The overall severity score is then computed as described in
the next section.

5.1. Severity

Severity is the overall score of the finding, weakness or vulnerability as computed from Impact
and Likelihood. Other factors, such as availability of tools and exploits, number of instances of
the vulnerability and ease of exploitation might also be taken into account when computing the
final severity score.

 weoww | wow

Table 5.1. How to compute overall Severity from Impact and Likelihood. The final severity factor
might vary depending on a project’s specific context and risk factors.

¢ Critical The identified issue may be immediately exploitable, causing a strong and major
negative impact system-wide. They should be urgently remediated or mitigated.

¢ High The identified issue may be directly exploitable causing an immediate negative im-
pact on the users, data, and availability of the system for multiple users.

. The identified issue is not directly exploitable but combined with other vulnera-
bilities may allow for exploitation of the system or exploitation may affect singular users.
These findings may also increase in severity in the future as techniques evolve.

e Low The identified issue is not directly exploitable but raises the attack surface of the
system. This may be through leaking information that an attacker can use to increase the
accuracy of their attacks.

¢ Informational Informational findings are best practice steps that can be used to harden
the application and improve processes. Informational findings are not assigned a severity
score and are classified as “Informational” instead.

© 2024 Nagravision Sarl / All Rights Reserved. Page 19 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

5.2. Impact

The overall effect of the vulnerability against the system or organization based on the areas of
concern or affected components discussed with the client during the scoping of the engage-
ment.

e High The vulnerability has a severe effect on the company and systems or has an affect
within one of the primary areas of concern noted by the client.

) It is reasonable to assume that the vulnerability would have a measurable affect
on the company and systems that may cause minor financial or reputational damage.

e Low There is little to no affect from the vulnerability being compromised. These vulnera-
bilities could lead to complex attacks or create footholds used in more severe attacks.

5.3. Likelihood

The likelihood of an attacker discovering a vulnerability, exploiting it, and obtaining a foothold
varies based on a variety of factors including compensating controls, location of the appli-
cation, availability of commonly used exploits, difficulty of exploitation and institutional knowl-
edge.

e High It is extremely likely that this vulnerability will be discovered and abused.

o It is likely that this vulnerability will be discovered and abused by a skilled at-
tacker.

e Low It is unlikely that this vulnerability will be discovered or abused when discovered.

© 2024 Nagravision Sarl / All Rights Reserved. Page 20 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc A
March 15, 2024

6. CONCLUSION

The objective of this secure code audit was to evaluate whether there were any vulnerabilities
that would put Ava Labs or users of the avalabs-mpc library at risk.

The Kudelski Security Team identified 2 security issues: 0 critical risks, 0 major risks, 0 medium
risks and 2 lower risk. On average, the effort needed to mitigate these risks is estimated as
low.

In order to mitigate the risks posed by this engagement’s findings, the Kudelski Security Team
recommends applying the following best practices:

1. Apply domain separation for recipients and dealers IDs in the keygeneration.
2. Pay particular attention to the reuse of presignatures.

Kudelski Security remains at your disposal should you have any questions or need further
assistance.

Kudelski Security would like to thank Ava Labs for their trust, help and support over the course
of this engagement and is looking forward to cooperating in the future.

© 2024 Nagravision Sarl / All Rights Reserved. Page 21 of 24
For Public Release

Ava Labs | Secure Code Review of avalabs-mpc ﬂ
March 15, 2024

RECIPIENT CONTACTS

m POSITION CONTACT INFORMATION

Arnold Yau Security Lead arnold@avalabs.com

© 2024 Nagravision Sarl / All Rights Reserved. Page 22 of 24
For Public Release

mailto:arnold@avalabs.com

Ava Labs | Secure Code Review of avalabs-mpc n
March 15, 2024

KUDELSKI SECURITY CONTACTS

m POSITION CONTACT INFORMATION

Jean-Sébastien Application and jean-
Nahon Blockchain Security sebastien.nahon@kudelskisecurity.com
Practice Manager
Alex Kopferschmitt Sales Manager - alex.kopferschmitt@kudelskisecurity.com
Blockchain Security
Luca Dolfi Security Engineer luca.dolfi@kudelskisecurity.com
© 2024 Nagravision Sarl / All Rights Reserved. Page 23 of 24

For Public Release

mailto:jean-sebastien.nahon@kudelskisecurity.com
mailto:jean-sebastien.nahon@kudelskisecurity.com
mailto:alex.kopferschmitt@kudelskisecurity.com
mailto:luca.dolfi@kudelskisecurity.com

Ava Labs | Secure Code Review of avalabs-mpc n
March 15, 2024

DOCUMENT HISTORY

VERSION DATE AUTHOR COMMENT

24.01.2024 Luca Dolfi First draft
1.1 23.02.2024 Luca Dolfi Final report
1.2 15.03.2024 Luca Dolfi Document prepared

for public release

© 2024 Nagravision Sarl / All Rights Reserved. Page 24 of 24
For Public Release

	Document Properties
	Table of Contents
	Executive Summary
	Key Findings

	Project Summary
	Scope
	Remarks
	Additional Note

	Findings
	KS-AL–1 SampleInterval does not Work Correctly for Certain Arguments
	KS-AL–2 Missing SSID in Fiat Shamir Proof
	KS-AL–3 Paillier Security Parameter too Small for 128 Bits Security
	KS-AL–4 Missing Edge Cases Checks

	Methodology
	Kickoff
	Ramp-up
	Review
	Code Review
	Cryptography
	Technical Specification Matching

	Reporting

	Vulnerability Scoring System
	Severity
	Impact
	Likelihood

	Conclusion
	Recipient Contacts
	Kudelski Security Contacts
	Document History

