

Audit of ECDSA-MPC

ING

26 March 2021

Version: 1.0

Presented by:

Kudelski Security Research Team

Kudelski Security – Nagravision SA

Corporate Headquarters

Kudelski Security – Nagravision SA

Route de Genève, 22-24

1033 Cheseaux sur Lausanne

Switzerland

For public release

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 2 of 32

For public release

DOCUMENT PROPERTIES

Version: 1.0

File Name: Audit_ING_TECDSA

Publication Date: 26 March 2021

Confidentiality Level: For public release

Document Owner: Tommaso Gagliardoni

Document Recipient: Shariff Lutfi

Document Status: Approved

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 3 of 32

For public release

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 6

1.1 Engagement Scope ... 6

1.2 Engagement Analysis .. 6

1.3 Observations ... 7

1.4 Issue Summary List ... 8

2. METHODOLOGY .. 9

2.1 Kickoff .. 9

2.2 Ramp-up .. 9

2.3 Review ... 9

2.4 Reporting ... 10

2.5 Verify ... 11

2.6 Additional Note .. 11

3. TECHNICAL DETAILS OF SECURITY FINDINGS ... 12

3.1 Security parameter check not enforced .. 12

3.2 Paillier secret key not zeroized after use .. 14

3.3 Secret share not zeroized upon error ... 15

3.4 Variable shadowing prevents zeroization ... 16

3.5 Paillier secret key not zeroized upon errors ... 17

3.6 Dlog signature nonce not zeroized ... 18

3.7 Intermediate signing values not zeroized ... 19

3.8 Incorrect upper bound in range sampling ... 20

3.9 Use of powm() .. 21

4. OTHER OBSERVATIONS... 22

4.1 Extra checks in get_rho_vec() .. 22

4.2 Proof of Knowledge is not a Signature ... 23

4.3 Commented out code .. 24

4.4 Lack of code coverage on error handling ... 25

4.5 Copy-paste error .. 26

4.6 Use of an unmaintained dependency ... 27

4.7 Single party attack on key resharing .. 28

APPENDIX A: ABOUT KUDELSKI SECURITY ... 30

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 4 of 32

For public release

APPENDIX B: DOCUMENT HISTORY ... 31

APPENDIX C: SEVERITY RATING DEFINITIONS ... 32

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 5 of 32

For public release

TABLE OF FIGURES

Figure 1 Issue Severity Distribution ... 7

Figure 2 Methodology Flow ... 9

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 6 of 32

For public release

EXECUTIVE SUMMARY

Kudelski Security (“Kudelski”, “we”), the cybersecurity division of the Kudelski Group, was

engaged by ING (“the Client”) to conduct an external security assessment in the form of a

code audit of the cryptographic library ecdsa-mpc (“the Product”).

The assessment was conducted remotely by the Kudelski Security Team and coordinated by

Dr. Tommaso Gagliardoni, Senior Cryptography Expert, Yolan Romailler Cryptography Expert

and Nathan Hamiel, Head of Cybersecurity Research. The audit focused on the following

objectives:

• To provide a professional opinion on the maturity, adequacy, and efficiency of the

software solution in exam.

• To check compliance with existing standards.

• To identify potential security or interoperability issues and include improvement

recommendations based on the result of our analysis.

This report summarizes the analysis performed and findings. It also contains detailed

descriptions of the discovered vulnerabilities and recommendations for remediation.

1.1 Engagement Scope

The scope of the audit was a code audit of the Product written in Rust, with a particular

attention to safe implementation of hashing, randomness generation, protocol verification, and

potential for misuse and leakage of secrets.

The target of the audit was the cryptographic code located in the sub-branches

/src/algorithms and /src/ecdsa at https://github.com/ing-bank/threshold-signatures.

We audited the commit number: cc86590a2fbc8ee41b6cede2bfbc48c03a0f4da5.

Particular attention was given to side-channel attacks, in particular constant timeness and

secure erasure of secret data from memory.

1.2 Engagement Analysis

The engagement consisted of a ramp-up phase where the necessary documentation about

the technological standards and design of the solution in exam was acquired, followed by a

manual inspection of the code provided by the Client and the drafting of this report.

As a result of our work, we identified 6 Medium, 3 Low, and 7 Informational findings.

https://github.com/ing-bank/threshold-signatures

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 7 of 32

For public release

Figure 1 Issue Severity Distribution

1.3 Observations

The Product is one of the most advanced libraries we are aware of implementing ECDSA

threshold signing and offers interesting features in terms of flexibility. Comments in the code

help pointing out to the scientific literature where specific algorithms are taken from.

Most of the issues we identified concern the way secret values are erased from memory after

use (“zeroization”). Zeroization is a tricky subject even in Rust, which is one of the few modern

programming languages offering such feature (thorough the zeroize() crate). Some

examples of misuse and correct implementation can be found for example at

https://benma.github.io/2020/10/16/rust-zeroize-move.html .

The only high severity problem we found (KS-INGT-O-07) is about the possibility of a single

malicious member in the resharing protocol to lock or delete funds. This dangerous

vulnerability, as far as we are aware of, is first reported in this document. However, it is a

problem of the protocol itself rather than the implementation, and it is therefore not possible to

address it by patching the code we audited. As far as we can tell, the Product follows the

protocol correctly, but this vulnerability arises from lack of validation of the underlying security

assumptions, namely the need for a trusted broadcast channel. This is not provided by the

Product (as the implementation of the network and authentication layer is left to the

application) and should be implemented at a higher level in the software stack. It is therefore

duty of the application using the Product to mitigate the attack, so we included this issue (and

discussion of possible remediation strategies) as an observation rather than a finding.

In general, we found the implementation to be of high standard and we believe that all the

identified issues can be easily addressed. Moreover, we did not find evidence of any hidden

backdoor or malicious intent in the code.

0

1

2

3

4

5

6

7

Medium Low Informational

Issue Severity Distribution

Medium Low Informational

https://benma.github.io/2020/10/16/rust-zeroize-move.html

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 8 of 32

For public release

1.4 Issue Summary List

The following security issues were found:

ID SEVERITY FINDING STATUS

KS-INGT-F-01 Low Security parameter check not enforced Remediated

KS-INGT-F-02 Medium Paillier secret key not zeroized after use Remediated

KS-INGT-F-03 Medium Secret share not zeroized upon error Remediated

KS-INGT-F-04 Medium Variable shadowing prevents zeroization Remediated

KS-INGT-F-05 Medium Paillier secret key not zeroized upon errors Remediated

KS-INGT-F-06 Medium Dlog signature nonce not zeroized Remediated

KS-INGT-F-07 Medium Intermediate signing values not zeroized Remediated

KS-INGT-F-08 Low Incorrect upper bound in range sampling Remediated

KS-INGT-F-09 Low Use of powm() Remediated

The following are observations related to general design and improvements:

ID SEVERITY FINDING STATUS

KS-INGT-O-01 Informational Extra checks in get_rho_vec() Remediated

KS-INGT-O-02 Informational Proof of Knowledge is not a

Signature

Remediated

KS-INGT-O-03 Informational Commented out code Remediated

KS-INGT-O-04 Informational Lack of code coverage on error

handling

Acknowledged

KS-INGT-O-05 Informational Copy-paste error Remediated

KS-INGT-O-06 Informational Use of an unmaintained dependency Remediated

KS-INGT-O-07 Informational Single party attack on key resharing Acknowledged

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 9 of 32

For public release

2. METHODOLOGY

For this engagement, Kudelski used a methodology that is described at high-level in this

section. This is broken up into the following phases.

Figure 2 Methodology Flow

2.1 Kickoff

The project was kicked off when all of the sales activities had been concluded. We set up a

kickoff meeting where project stakeholders were gathered to discuss the project as well as the

responsibilities of participants. During this meeting we verified the scope of the engagement

and discussed the project activities. It was an opportunity for both sides to ask questions and

get to know each other. By the end of the kickoff there was an understanding of the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

2.2 Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular project.

This included the steps needed for gaining familiarity with the codebase and technological

innovations utilized, such as:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for the languages used in the code

• Researching common flaws and recent technological advancements

2.3 Review

The review phase is where a majority of the work on the engagement was performed. In this

phase we analyzed the project for flaws and issues that could impact the security posture.

This included an analysis of the architecture, a review of the code, and a specification

matching to match the architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review of the original protocol

2. Review of the code written for the project

Kickoff Ramp-up Review Report Verify

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 10 of 32

For public release

3. Assessment of the cryptographic primitives used

4. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and utilizing the experience

of the reviewer. No dynamic testing was performed, only the use of custom-built scripts and

tools were used to assist the reviewer during the testing. We discuss our methodology in more

detail in the following subsections.

Code Safety

We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues

• Poor coding practices and unsafe behavior

• Leakage of secrets or other sensitive data through memory mismanagement

• Susceptibility to misuse and system errors

• Error management and logging

This is a general and not comprehensive list, meant only to give an understanding of the issues

we have been looking for.

Cryptography

We analyzed the cryptographic primitives and components as well as their implementation.

We checked in particular:

• Matching of the proper cryptographic primitives to the desired cryptographic

functionality needed

• Security level of cryptographic primitives and their respective parameters (key lengths,

etc.)

• Safety of the randomness generation in general as well as in the case of failure

• Safety of key management

• Assessment of proper security definitions and compliance to use cases

• Checking for known vulnerabilities in the primitives used

Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the

specification. We checked for things such as:

• Proper implementation of the documented protocol phases

• Proper error handling

• Adherence to the protocol logical description

2.4 Reporting

Kudelski delivered to the Client a preliminary report in PDF format that contained an executive

summary, technical details, and observations about the project, which is also the general

structure of the final report.

The executive summary contains an overview of the engagement, including the number of

findings as well as a statement about our general risk assessment of the project as a whole.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 11 of 32

For public release

In the report we not only point out security issues identified but also informational findings for

improvement categorized into several buckets:

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity ranking

and recommendations for mitigation.

As we performed the audit, we also identified issues that are not security related, but are

general best practices and steps, that can be taken to lower the attack surface of the project.

2.5 Verify

After the preliminary findings have been delivered, we verified the fixes applied by the Client.

After these fixes were verified, we updated the status of the finding in the report.

The output of this phase was the current, final report with any mitigated findings noted.

2.6 Additional Note

It is important to notice that, although we did our best in our analysis, no code

audit assessment is per se guarantee of absence of vulnerabilities. Our effort was

constrained by resource and time limits, along with the scope of the agreement.

In assessing the severity of some of the findings we identified, we kept in mind both

the ease of exploitability and the potential damage caused by an exploit. Since this

is a library, we ranked the severity of some of these vulnerabilities potentially higher than

usual, as we expect the code to be reused across different applications with different input

sanitization and parameters.

While assessment the severity of the findings, we considered the impact, ease of exploitability,

and the probability of attack. This is a solid baseline for severity determination. Information

about the severity ratings can be found in Appendix C of this document.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 12 of 32

For public release

3. TECHNICAL DETAILS OF SECURITY FINDINGS

This section contains the technical details of our findings as well as recommendations for

mitigation.

3.1 Security parameter check not enforced

Finding ID: KS-INGT-F-01

Severity: Low

Status: Remediated

Location: src/algorithms/dlog_signature.rs @ line 47

Description and Impact Summary

The function verify() checks that a provided proof of discrete logarithm knowledge is valid.

It also checks that the validity holds for a given security parameter.

 pub fn verify(&self, N: &BigInt, g: &BigInt, V: &BigInt, security_param: u

32) -> bool {

 let x = g.powm(&self.y, N) * V.powm(&self.c, N) % N;

 let c = HSha512Trunc256::create_hash(&[N, g, V, &x]);

 c == self.c && self.security_param == security_param

 }

However, this last check is useless because it is not enforceable. The value

security_param is simply provided as input by the (possibly dishonest) proving party, so it

could be anything and disconnected from the statement in exam.

Recommendation

Verifying that a given instance/statement respects a certain security parameter is highly non-

trivial. To be strict, one should re-compute the security parameter from the public key directly,

this possibly considering not only the bitsize, but also verifying that the modulus is of the right

form, etc. Depending on the context (including this use case) this might be definitely overkill.

In order to strengthen the robustness of the proof, we recommend either or both of the

following two modifications:

1) Compute the value security_param from the bitsize of the statement V; or

2) Include security_param in the Fiat-Shamir hash at lines 33 and 45.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 13 of 32

For public release

Status Details

In PR #22 the check for security_param has been removed, but it has been made implicit

by versioning the protocol. More specifically: the subroutines in dlog_proof.rs are still

called by passing security_param as an argument, but the value itself is hardcoded as

‘128’ in the high-level calls from zkp.rs and a salt string representing an identifier for the

protocol version is included in the Fiat-Shamir hash generation. This is consistent with other

default parameters in the code (including the use of curve secp256k1 as used in Bitcoin)

targeting a security level of 128 bits.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 14 of 32

For public release

3.2 Paillier secret key not zeroized after use

Finding ID: KS-INGT-F-02

Severity: Medium

Status: Remediated

Location: src/ecdsa/keygen.rs @ line 362

Description and Impact Summary

During Phase 1 of the MPC key generation, each party fetches a copy of their own Paillier

secret key from the trusted vault in order to generate a zero-knowledge proof. However, this

copy is not zeroized after the generation of the proof.

 let dk = secret_key_loader

 .get_paillier_secret()

 .map_err(|e| KeygenError::ProtocolSetupError(e.0))?;

 if !PaillierKeys::is_valid(&init_keys.paillier_encryption_key, &dk) {

 return Err(KeygenError::ProtocolSetupError(

 "invalid own Paillier key".to_string(),

));

 }

 let proof = nizk_rsa::gen_proof(dk);

Recommendation

We recommend performing zeroization on the secret key to protect the value from compromise

after the key is used.

Status Details

PR #21 has introduced “boxing” for variables containing secret values, so that they are erased

before the object gets out of scope.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 15 of 32

For public release

3.3 Secret share not zeroized upon error

Finding ID: KS-INGT-F-03

Severity: Medium

Status: Remediated

Location: src/ecdsa/keygen.rs @ line 653

Description and Impact Summary

At the end of Phase 2 of the MPC key generation, in preparation for the next phase, each

party loads a copy of their own secret share from the trusted vault in order to generate the

commitment broadcast for Phase 3. It is checked that this loading procedure does not return

error, otherwise the state machine transition to an error state and the protocol is aborted.

However, a generic error does not automatically imply that the secret share (or part of it) was

not fetched from the vault. This could leave sensitive information in memory.

 let sk = self.secret_key_loader.get_initial_secret();

 if let Err(e) = &sk {

 errors.push(KeygenError::GeneralError(e.0.clone()));

 }

 if !errors.is_empty() {

 let error_state = ErrorState::new(errors);

 log::error!("Phase2 returns {:?}", error_state);

 return Transition::FinalState(Err(error_state));

 }

Recommendation

We recommend to zeroize the secret share copy before proceeding to error management.

Status Details

PR #21 has introduced “boxing” for variables containing secret values, so that they are erased

before the object gets out of scope.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 16 of 32

For public release

3.4 Variable shadowing prevents zeroization

Finding ID: KS-INGT-F-04

Severity: Medium

Status: Remediated

Location: src/ecdsa/keygen.rs @ line 664

Description and Impact Summary

During Phase 2 of the MPC key generation, the secret share variable let sk is defined and

loaded at line 653. At line 664 a new variable let mut sk is defined, thereby shadowing the

old variable. The zeroization at line 668 only affects the inner variable, but the shadowed one

remains in memory, with potential leakage of secrets.

 let (vss_scheme, outgoing_shares) = {

 let mut sk = sk.unwrap();

 let vss_sharing =

 VerifiableSS::share(self.params.threshold, self.params.share_c

ount, &sk);

 sk.zeroize();

 vss_sharing

 };

Recommendation

We recommend avoiding shadowing, also for a matter of cleanliness of the code, and add a

zeroization for the outer variable.

Status Details

PR #21 has introduced “boxing” for variables containing secret values, so that they are erased

before the object gets out of scope. Moreover, the variable name has been changed for

readability.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 17 of 32

For public release

3.5 Paillier secret key not zeroized upon errors

Finding ID: KS-INGT-F-05

Severity: Medium

Status: Remediated

Location: src/ecdsa/keygen.rs @ line 861

Description and Impact Summary

During Phase 3 of the MPC key generation, the secret Paillier key is loaded, and if an error

occurs the protocol aborts. However, the key is not zeroized before exiting. This could leave

sensitive traces in memory.

 if !errors.is_empty() {

 log::error!("Phase3 returns errors {:?}", errors);

 return Transition::FinalState(Err(ErrorState::new(errors)));

 }

 let mut dk = dk.expect("invalid paillier decryption key");

Recommendation

We recommend zeroizing the secret key before exit.

Status Details

PR #21 has introduced “boxing” for variables containing secret values, so that they are erased

before the object gets out of scope.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 18 of 32

For public release

3.6 Dlog signature nonce not zeroized

Finding ID: KS-INGT-F-06

Severity: Medium

Status: Remediated

Location: src/algorithms/dlog_signature.rs @ line 35

Description and Impact Summary

During generation of the signature (proof of discrete logarithm knowledge), the nonce value r

is not zeroized after use. Notice that schemes such as ECDSA are extremely sensitive to

leakage of even just fractions of the bits of r.

 let y = r - c.borrow() * s;

 Self {

 security_param,

 y,

 c,

 }

Recommendation

We recommend zeroizing the nonce after use.

Status Details

Fixed in PR #19.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 19 of 32

For public release

3.7 Intermediate signing values not zeroized

Finding ID: KS-INGT-F-07

Severity: Medium

Status: Remediated

Location: src/ecdsa/signature.rs @ line 1234

Description and Impact Summary

During Phase 4 of signing, the intermediate temporary secret values k_i and gamma_i are

not zeroized before proceeding to Phase 5.

 let g_gamma_sum = responses

 .iter()

 .fold(g_gamma_i, |acc, msg| acc + msg.1.g_gamma_i);

 let R = g_gamma_sum * self.delta_inv;

 let local_sig =

 LocalSignature::new(&self.params.message_hash, &R, &self.k_i,

&self.sigma_i);

 let (p5_commit, p5_decommit) = local_sig.phase5b_proof();

 Transition::NewState(Box::new(Phase5ab {

Recommendation

We recommend zeroizing these intermediate values as soon as they are not required

anymore.

Status Details

PR #21 has introduced “boxing” for variables containing secret values, so that they are erased

before the object gets out of scope.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 20 of 32

For public release

3.8 Incorrect upper bound in range sampling

Finding ID: KS-INGT-F-08

Severity: Low

Status: Remediated

Location: various, for example: src/algorithms/dlog_signature.rs @ line 30

Description and Impact Summary

The function sample_below() samples at random an integer strictly below a given bound.

However, throughout the code it is often called as if the bound is included. This slightly reduces

the entropy of the sample. For example, in the code below it is not necessary to subtract

BigInt::one() from the bound.

 let R = BigInt::from(2).pow(log_r) - BigInt::one();

 let r = BigInt::sample_below(&R);

Recommendation

We recommend checking carefully the upper bound.

Status Details

Fixed in PR #17.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 21 of 32

For public release

3.9 Use of powm()

Finding ID: KS-INGT-F-09

Severity: Low

Status: Remediated

Location: various

Description and Impact Summary

The function powm() is used extensively throughout the codebase. This function computes a

modular exponentiation not in constant time, which might leak information about the

arguments.

Recommendation

We recommend using powm_sec() instead, whenever there is secret parameters involved in

the call.

Status Details

Fixed in PR #16.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 22 of 32

For public release

4. OTHER OBSERVATIONS

This section contains additional observations that are not directly related to the security of the

code, and as such have no severity rating or remediation status summary. These observations

are either minor remarks regarding good practice or design choices or related to

implementation and performance. These items do not need to be remediated for what

concerns security, but where applicable we include recommendations.

4.1 Extra checks in get_rho_vec()

Observation ID: KS-INGT-O-01

Location: src/algorithms/nizk_rsa.rs @ line 95

Description and Impact Summary

The function here follows the pseudocode of https://eprint.iacr.org/2018/057.pdf , section C.4.

However, two additional checks for each vector element are introduced in the code:

- The check that every rho is nonzero; and

- The check that GCD(rho,n)=1.

Recommendation

We do not see a potential vulnerability here, but we recommend anyway documenting this

choice.

Notes

This deviation was initially an explicit design choice from the Client. The original algorithm

actually requires that all the rho vector components lie in Zn* rather than just Zn, where n is a

product of two safe primes p and q. In order to ensure this, the two additional checks are

required. However, from a practical perspective they can be removed because:

1) The probability of picking a candidate in Zn but not in Zn* is negligible;

2) Even if this happens, that’s not a security risk, it will just make an iteration of the

algorithm fail and cause a false negative that will require sampling new components;

3) The performance loss of wasting some cycles by (rarely) sampling new rho

components is nothing compared to the performance gain of (always) skipping an

expensive GCD check.

For these reasons, the redundant checks have been removed with PR #23.

https://eprint.iacr.org/2018/057.pdf

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 23 of 32

For public release

4.2 Proof of Knowledge is not a Signature

Observation ID: KS-INGT-O-02

Location: src/algorithms/dlog_signature.rs @ line 16

Description and Impact Summary

The function here is called “signature”. This can be misleading, as there is no message to

sign. What the function actually does is computing a “proof of knowledge of discrete logarithm”

for the DSA signature scheme (so, basically signing the public key itself).

/// Signature scheme for DL proof in a composite group with unknown modulo

///

/// "Composite discrete logarithm and secure authentication" , D. Pointcheval

, pp 3.2

#[allow(clippy::many_single_char_names)]

impl DlogSignature {

Recommendation

Just in order to improve readability, we suggest changing the function’s name.

Notes

This has been fixed (both at the code and filename level) in PR #18.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 24 of 32

For public release

4.3 Commented out code

Observation ID: KS-INGT-O-03

Location: src/ecdsa/resharing.rs @ line 1366

Description and Impact Summary

A line of code has been left commented out, its role unclear.

 //assert!(shares.len() >= self.reconstruct_limit());

Recommendation

We recommend checking the need for the additional check and removing the code altogether

if not necessary.

Notes

Commented out code has been removed in PR #18.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 25 of 32

For public release

4.4 Lack of code coverage on error handling

Observation ID: KS-INGT-O-04

Location: various

Description and Impact Summary

There is no test code coverage on code that handles errors.

Recommendation

Tests that exclusively take a positive program-flow into account often lead to a false sense of

security. Negative test cases are a good support for assessing if possible errors are handled

correctly, even if the implemented error handling is thorough and robust.

Notes

Expanding test case coverage is planned in the next major release of the Product.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 26 of 32

For public release

4.5 Copy-paste error

Observation ID: KS-INGT-O-05

Location: src/ecdsa/resharing.rs @ line 494

Description and Impact Summary

There is a mismatch for the reference to the new VS old committee between the code and

the comment and error message.

 // check if new committee has duplicates

 let old_parties_as_set = BTreeSet::from_iter(old_committee.iter().

cloned());

 if old_parties_as_set.len() != old_committee.len() {

 return Err(ResharingError::ProtocolSetupError(

 "duplicate entries in new committee's list".to_string(),

));

 }

Recommendation

Fix the typo.

Notes

This has been fixed in PR #18.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 27 of 32

For public release

4.6 Use of an unmaintained dependency

Observation ID: KS-INGT-O-06

Location: Cargo.lock @ line 322

Cargo.toml @ line 24

Description and Impact Summary

The failure dependency is unmaintained and has a Rustsec advisory recommending

alternatives: https://rustsec.org/advisories/RUSTSEC-2020-0036.html

Recommendation

Do not use unmaintained dependencies and use cargo-audit to monitor for issues and

Rustsec advisory notices in the codebase: https://github.com/RustSec/cargo-audit

Notes

This has been fixed in PR #15.

https://rustsec.org/advisories/RUSTSEC-2020-0036.html
https://github.com/RustSec/cargo-audit

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 28 of 32

For public release

4.7 Single party attack on key resharing

Finding ID: KS-INGT-O-07

Location: src/ecdsa/resharing.rs @ line 917

Description and Impact Summary

The key resharing protocol is a delicate procedure that has been covered by many recent

attacks. One of these attacks, the “forget-and-forgive”, is presented in the public report

“Attacking Threshold Wallets” by J.P. Aumasson and O. Shlomovits, and is described as:

The recommended mitigation is:

This mitigation is correctly implemented by the Client in the Product:

 /// Last phase of the protocol

 ///

 /// * sends `FinalAck` messages to all parties, including members of old a

nd new committees

 /// * collects `FinalAck` from membeers of new committee and exits

However, we found the mitigation insufficient.

A new, malicious committee member is able to create a split of the new committee into two

sets by simply sending crafted ACK messages in phase 5:

- A set believing the resharing failed.

- A set believing the resharing succeeded.

This has the consequence that this single party can put themself into a position of force that

allows them to either cause a complete loss of funds (not enough valid shares having been

written to disk after phase 5 to carry out with the old committee, nor with the new committee);

or to cause a blackmail situation where her share is mandatory for the new committee to

produce valid signatures.

Recommendation

Protecting the integrity of the resharing protocol and ensuring that it is completed successfully

is highly non-trivial. The obvious naïve solution of ending the protocol with a final phase (where

a threshold signature for a dummy “OK” message is generated and verified) does only

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 29 of 32

For public release

guarantee that a large enough quorum exists somewhere such that a signature is possible,

but does not address other important issues:

1. Does the quorum only include non-malicious parties?

2. Do all the parties of the new committee yield valid shares?

3. Can we identify misbehaving parties?

The best solution (which completely mitigates the attack) would be to ensure that the parties

have access to a robust broadcast channel, which guarantees integrity and availability of all

broadcast messages for all parties. This way no malicious party can send different broadcast

ACK messages to different parties. Implementing such a broadcast channel however should

be provided by the network layer at an application level, and is therefore not enforceable in

the Product. We recommend adding a warning in the documentation of the Product.

Given that the recommended fix is not enforceable by the Product, we classify this issue as

an “observation” rather than a “finding”, despite its severity. We provide below other possible

mitigation strategies that can be enforced in the Product’s code directly instead, but offer

lesser guarantees and come with some drawbacks. We recommend adopting the strategies

below only if the availability of a robust broadcast channel as described above is not possible.

A possible fix which provides weaker guarantees is as follows: at the end of the resharing

protocol, each party acknowledges success (and therefore erases the old share) if and only if

at least a threshold number of “ACK” messages is received among the members of the new

committee. More specifically: if an old committee consisting of no parties and threshold to (such

that to+1 parties are required for signing) enters the resharing protocol (removing old members

and adding new ones) into a new committee of nn parties and threshold tn, then each party of

the old committee who is becoming a member of the new committee only does so (and erases

the old share) if at least tn ACKs are received from the other member candidates of the new

committee. This ensures that (notwithstanding accidental network errors or other non-

malicious errors in the protocol) at least tn+1 members of the new committee can recover the

secret. However, this does not ensure that the other (nn-tn-1) members of the new committee

have valid shares, nor it ensures that there are enough (tn+1) non-malicious parties in the new

committee. In other words, the new committee must anyway include at least (tn+1) total honest

parties for the funds not to be locked in a blackmail scheme. This is anyway a much better

situation than in the original fix proposed in the “Attacking Threshold Wallets” paper, where

even just a single malicious party can blackmail the whole committee.

We suggest, in addition to the above, the two following countermeasures:

1) Parties should retain a history of the old shares, as a backup precaution; and

2) Never increase the threshold value t unless absolutely necessary (the Product

should forbid this unless an explicit warning flag is set by the user).

More effective mitigation probably requires additional research.

Status Details

The Client acknowledges the potential for a threat and agrees that successful mitigation is

only possible at the application layer. Therefore, no fix is being implemented in the Product.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 30 of 32

For public release

APPENDIX A: ABOUT KUDELSKI SECURITY

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and media

security solutions to enterprises and public sector institutions. Our team of security experts

delivers end-to-end consulting, technology, managed services, and threat intelligence to help

organizations build and run successful security programs. Our global reach and cyber

solutions focus is reinforced by key international partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit

https://www.kudelskisecurity.com.

Kudelski Security

Route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

Kudelski Security

5090 North 40th Street

Suite 450

Phoenix, Arizona 85018

This report and its content is copyright (c) Nagravision SA, all rights reserved.

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 31 of 32

For public release

APPENDIX B: DOCUMENT HISTORY

VERSION STATUS DATE AUTHOR COMMENTS

0.1 Draft 8 March 2021 Tommaso
Gagliardoni

0.2 Draft 17 March 2021 Tommaso
Gagliardoni

Added finding
and moved
finding into
observations

0.3 Draft 25 March 2021 Tommaso
Gagliardoni

Final draft with
feedback from
Client

1.0 Final Version 26 March 2021 Tommaso
Gagliardoni

Final Version

REVIEWER POSITION DATE VERSION COMMENTS

Nathan Hamiel Head of Security
Research

8 March 2021 0.1

Nathan Hamiel Head of Security
Research

26 March 2021 1.0

APPROVER POSITION DATE VERSION COMMENTS

Nathan Hamiel Head of Security
Research

8 March 2021 0.1

Nathan Hamiel Head of Security
Research

26 March 2021 1.0

ING | Audit of ECDSA-MPC

26 March 2021

© 2021 Nagravision SA / All Rights Reserved Page 32 of 32

For public release

APPENDIX C: SEVERITY RATING DEFINITIONS

Kudelski Security uses a custom approach when determining criticality of identified issues.

This is meant to be simple and fast, providing customers with a quick at a glance view of the

risk an issue poses to the system. As with anything risk related, these findings are situational.

We consider multiple factors when assigning a severity level to an identified vulnerability. A

few of these include:

• Impact of exploitation

• Ease of exploitation

• Likelihood of attack

• Exposure of attack surface

• Number of instances of identified vulnerability

• Availability of tools and exploits

SEVERITY DEFINITION

High The identified issue may be directly exploitable causing an immediate

negative impact on the users, data, and availability of the system for

multiple users.

Medium The identified issue is not directly exploitable but combined with other

vulnerabilities may allow for exploitation of the system or exploitation

may affect singular users. These findings may also increase in severity

in the future as techniques evolve.

Low The identified issue is not directly exploitable but raises the attack

surface of the system. This may be through leaking information that an

attacker can use to increase the accuracy of their attacks.

Informational Informational findings are best practice steps that can be used to harden

the application and improve processes.

